In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r...In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.展开更多
An adaptable and compact fast pulse sampling module was developed for the neutron–gamma discrimination. The developed module is well suited for low-cost and low-power consumption applications. It is based on the Domi...An adaptable and compact fast pulse sampling module was developed for the neutron–gamma discrimination. The developed module is well suited for low-cost and low-power consumption applications. It is based on the Domino Ring Sampler 4(DRS4) chip, which offers fast sampling speeds up to 5.12 giga samples per second(GSPS) to digitize pulses from front-end detectors. The high-resolution GSPS data is useful for obtaining precise real-time neutron–gamma discrimination results directly in this module. In this study, we have implemented real-time data analysis in a field programmable gate array. Real-time data analysis involves two aspects: digital waveform integral and digital pulse shape discrimination(PSD). It can significantly reduce the system dead time and data rate processed offline. Plastic scintillators(EJ-299-33), which have proven capable of PSD, were adopted as neutron detectors in the experiments. A photomultiplier tube(PMT)(model #XP2020) was coupled to one end of a detector to collect the output light from it. The pulse output from the anode of the PMT was directly passed onto the fast sampling module. The fast pulse sampling module was operated at 1 GSPS and 2 GSPS in these experiments, and the AmBe-241 source was used to examine the neutron–gamma discrimination quality. The PSD results with different sampling rates and energy thresholds were evaluated. The figure of merit(FOM) was used to describe the neutron–gamma discrimination quality. The best FOM value of 0.91 was obtained at 2 GSPS and 1 GSPS sampling rates with an energy threshold of 1.5 MeV_(ee)(electron equivalent).展开更多
In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using Win XCOM software to investigate the shielding effectiveness of these ores against gamma ...In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using Win XCOM software to investigate the shielding effectiveness of these ores against gamma rays. The mass attenuation coefficients were also calculated using MCNP-4 B code and compared with Win XCOM results; consequently, a good consistency between the results of Win XCOM and MCNP-4 B was observed. Furthermore, the G-P fitting method was used to evaluate the values of exposure buildup factor(EBF) in the energy range of 0.015–15 Me V up to 40 mean free paths. Among the selected ores, boron-bearing iron concentrate ore(M3)was determined to be the best gamma ray shielding ore owing to its higher values of mass attenuation coefficient and equivalent atomic number and lower value of EBF.Moreover, American Evaluated Nuclear Data File(ENDF/B-VII) was used to analyze the shielding effectivenessagainst thermal neutrons. It was determined that Szaibelyite(M2) is the best thermal neutron shielding material.This study would be useful for demonstrating the potential of boron-containing ores for applications in the field of nuclear engineering and technology.展开更多
In April 2017, a mini neutron monitor (NM) was installed at King Abdulaziz City for Science and Technology (KACST) central Saudi Arabia (Riyadh;cut-off rigidity, Rc = 14.4 Gv) for continuous observation of the cosmic ...In April 2017, a mini neutron monitor (NM) was installed at King Abdulaziz City for Science and Technology (KACST) central Saudi Arabia (Riyadh;cut-off rigidity, Rc = 14.4 Gv) for continuous observation of the cosmic ray (CR) neutrons. The detector was built as a major aspect of the international scientific joint effort between the Centre of Space Research (North-West University, Potchefstroom, South Africa) and KACST. The recorded data correspond to low energy neutrons that primarily have energies lower than 20 GeV. In this paper, a brief description about the mini NM detector will be given. The influence of atmospheric pressure on the recorded CR neutrons was studied and the barometric coefficient was calculated and used to eliminate the pressure effects from the measured data. The obtained coefficient was consistent with those previously obtained by several investigators. The daily variation of the CR neutron was studied and characterized. Short-term CR periodicities, such as the 27-day period, and its two harmonics, were identified. The obtained periodicities are in agreement with those reported by different researchers. The obtained results from this detector have been compared to the existing 1 m<sup>2</sup> scintillator detector showing comparable results. Long-term data from this detector will be of incredible significance to the research community to investigate several types of CR variations resulting from solar activity at such high cut off rigidity site.展开更多
The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on t...The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.展开更多
In recent years, many studies were published describing a wide scope of changes related to extreme (stormy) geomagnetic activity. In some countries, prediction of such days is a part of weather prediction information....In recent years, many studies were published describing a wide scope of changes related to extreme (stormy) geomagnetic activity. In some countries, prediction of such days is a part of weather prediction information. A number of risk factors like blood coagulation parameters, arterial blood pressure, inflammation markers, and some blood proteins were changing at days of GMA storms. Concomitant studies were published on an inverse phenomenon-increased cardiovascular event at days of Zero GMA, accompanied by high Space Neutron activity on the Earth’s surface—a marker of high Cosmic Ray activity. The aim of this study was to compare two groups of Acute Cardiovascular Events (ACE)—Acute Myocardial Infarction (AMI) and deaths from Ischemic Heart Disease (IHD) at days of extreme Cosmic Ray (CRA)-Neutron activity. Patients & methods: 4749 days at years 2000-2012 were studied considering ACE in a 3000 bed hospital in Kaunas, Lithuania. Cosmophysical data of this period was obtained from USA, Russia, and Finland. ACE was calculated at day of extreme High levels of CRA and following 48 hours. 13629 AMI and 3128 deaths from IHD were included. Results: It was a significant rise in AMI morbidity at day of high CRA (Neutron) activity (≥9300 imp/min). By analysis for each of gender, and patients age groups that were significant difference of AMI for all patients and male >65 y. old at Neutron activity ≥9400 imp/min (p = 0.048;p = 0.03), both gender > 65 y. old at Neutron activity >9500 (p = 0.078) and female >65 y. at Lag 2 (p = 0.07). For deaths from IHD, it was a significant rise at Neutron activity below 9300 imp/min (662 days (13.8%) were above the average of the full observation time-8935 ± 538.083)). Conclusion: At days of high CRA-Neutron activity, it was significantly more AMI. For IHD mortality was higher, but at lower Neutron activity—closer to average Neutron activity and higher GMA.展开更多
An experimental system aimed at n-γ discrimination using the zero-crossing method with a φ3’’×2’’ BC501A liquid scintillation detector was established and tested with an Am-Be neutron source. Two-dimensiona...An experimental system aimed at n-γ discrimination using the zero-crossing method with a φ3’’×2’’ BC501A liquid scintillation detector was established and tested with an Am-Be neutron source. Two-dimensional plots of energy versus zero-crossing time were obtained. The quality of n-γ discrimination was checked by the figure-of-merit (FOM), the neutron peak-to-valley ratio, and the proportion of leaked neutrons over all neutron events. The performance of n-γ discrimination in terms of FOM was compared with previous work done by other groups. The n-γ discrimination in four different energy regions with an interval of 0.1 MeV between 0.3 MeV and 0.7 MeV was studied, and the results indicate that the n-γ discrimination threshold can go down to 0.4 MeV.展开更多
A small-angle scattering neutron spectrometer for material research is under construction at the China Spallation Neutron Source. An intervening neutron beam monitor behind the sample is needed to measure the beam int...A small-angle scattering neutron spectrometer for material research is under construction at the China Spallation Neutron Source. An intervening neutron beam monitor behind the sample is needed to measure the beam intensity in order to reduce the measurement uncertainty caused by beam fluctuation. Considering the mobility requirement and limited space, we proposed a compact monitor using a type of lithium-glass scintillator provided by China Building Materials Academy. Its performance was studied experimentally using ^(252)Cf and ^(60)Co sources.The neutron light yield of the selected scintillator was measured to be 5:3 × 10~3 photons/neutron. The feasibility of n-gamma discrimination using the charge comparison method was verified. By using the Geant4 toolkit, themonitor was modeled with precise physical processes including neutron tracking, scintillation, and optical photon transmission. The gamma sensitivity and detection efficiency were investigated in the simulation. It was concluded that a 0.5-mm-thick lithium-glass scintillator with natural lithium is an appropriate choice to satisfy both the neutron detection efficiency and gamma elimination requirements.展开更多
To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross s...To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross section spectrometer(NTOX), a dedicated lithium-containing scintillation detector has been developed on the Back-n beam line at the China Spallation Neutron Source. The Fast Scintillator-based Neutron Total Cross Section(FAST) spectrometer has been designed based on a Cs2Li La Br6(CLLB) scintillator considering the γ-ray flash and neutron environment on the Back-n beam line. The response of the CLLB scintillator to neutrons and γ-rays was evaluated with different 6Li/7 Li abundance ratios using Geant4. The neutron-γdiscrimination performance of the CLLB has been simulated considering different scintillation parameters, physical designs,and light readout modes. A cubic 6Li-enriched( > 90%) CLLB scintillator, which has a thickness of 4-9 mm and side length of no less than 50 mm to cover the Φ 50 mm neutron beam at the spectrometer position, has been proposed coupling to a side readout SiPM array to construct the FAST spectrometer. The developed simulation techniques for neutron-γ discrimination performance could provide technical support for other neutron-induced reaction measurements on the Back-n beam line.展开更多
The prototype neutron flux monitor consists of a high purity ^(235)U fission chamber detector and a'blank'detector,which is a fissile material free detector with the same dimension as the fission chamber detec...The prototype neutron flux monitor consists of a high purity ^(235)U fission chamber detector and a'blank'detector,which is a fissile material free detector with the same dimension as the fission chamber detector to identify noise issues such as noise coming from gamma rays.The main parameters of the fission chamber assembly that have been measured in the laboratory are confirmed to approach the technological level of the International Thermonuclear Experimental Reactor(ITER)in the near future.This prototype neutron flux monitor will be further developed to become a neutron flux monitor suitable for the operation phase of D-D fusion on the ITER.展开更多
The links of many medical-biological events with high levels of geomagnetic activity (GMA) are widely discussed. In recent years, several medical phenomena were described in inverse distribution by time with GMA. Also...The links of many medical-biological events with high levels of geomagnetic activity (GMA) are widely discussed. In recent years, several medical phenomena were described in inverse distribution by time with GMA. Also a concurrent to GMA and solar activity force-cosmic ray activity (CRA) and closely related high energy neutron and proton fluxes are studied as a forces dominating at low GMA and solar activity in relation to considered medical events. The aim of this study was to explore the distribution of some important medical events on days with “Zero” GMA levels, accompanied by high CRA (neutron activity). Medical event data of the Grand Baku region (more than 3 mln inhabitants), Azerbaijan, with daily distribution on the time 1 Dec. 2002-31 Dec. 2007 was compared to daily GMA Kp indices in general (Kp > 0, 1837 days) and 34 days daily GMA indices Kp = 0. Daily CRA data was also compared using neutron monitoring data from two stations. Daily averaged data and their standard deviations on the mentioned GMA levels were compared and statistical significance was established. Results revealed a significant rise in the number of emergencies (n = 1,567,576) and total deaths number (n = 46,360) at the days of “Zero” GMA level. These days were accompanied by significant rise of CRA (neutron activity). For Sudden Cardiac Deaths (SCD, n = 1615) and cerebral stroke (CVA, n =10,054) the increase achieved strong trend to significance level. Acute Myocardial Infarction occurrence (morbidity) and trauma were also absolutely more registered at days with “Zero” GMA level, despite the small number of such days. The average Infection numbers show an inverse relationship with absolutely high registry at the “Zero” GMA level days. Study linking environmental physical activity levels and the human medical data shows that geomagnetic field variations accompanied by the increased level of cosmic ray activity, can have either direct or indirect adverse effects on human health and physiology, even when the magnitude of the geomagnetic field disturbance is extremely small or even is equal to zero. On days of “Zero” daily Kp indices describing Geomagnetic Activity, accompanied by high Cosmic Ray Activity (neutron activity), more medical emergencies and total death number (daily) occurred. Sudden Cardiac Deaths and Cerebral Stroke numbers show a strong trend to significant rise. Absolute increase of number of Acute Myocardial Infarction and less Infections, not achieving statistical significance, was also observed. These results are additional data for considering Cosmic Ray Activity (neutron activity) as an additional factor involved in time distribution of human medical events.展开更多
We report the results from our analysis of Fermi Large Area Telescope (LAT) data for the transitional millisecond pulsar binary PSR J1023+0038. The time period of the data is nearly 9 yr, and that after the source...We report the results from our analysis of Fermi Large Area Telescope (LAT) data for the transitional millisecond pulsar binary PSR J1023+0038. The time period of the data is nearly 9 yr, and that after the source's transition, in June 2013 from the disk-free state to the active state of having an accretion disk, is approximately 4 yr. We identify a high-energy 〉5.5 GeV component in the source's spectrum in the active state, and find this component is only significantly detected in half of the orbital phase centered at the descending node (when the pulsar is moving towards the Earth). Considering the pulsar scenario proposed for multi-frequency emission from the source, in which the pulsar is still active and a cold-relativistic pulsar wind inverse-Compton scatters the photons from the accretion disk, we discuss the origin of the high-energy component. In order to explain the observed spectrum, a power-law distribution of particles, with an index of ~3, in the pulsar wind is required, while the orbital variations are possibly due to changes in power-law index as a function of orbital phase.展开更多
The LOw-Frequency ARray(LOFAR)has recently conducted a survey(LOFAR Tied-Array Allsky Survey;LOTAAS)for pulsars in the Northern hemisphere that resulted in discoveries of 73 new pulsars.For the purpose of studying the...The LOw-Frequency ARray(LOFAR)has recently conducted a survey(LOFAR Tied-Array Allsky Survey;LOTAAS)for pulsars in the Northern hemisphere that resulted in discoveries of 73 new pulsars.For the purpose of studying the properties of these pulsars,we search for theirγ-ray counterparts using the all-sky survey data obtained with the Large Area Telescope(LAT)onboard the Fermi Gamma-Ray Space Telescope(Fermi).We analyze the LAT data for 70 LOTAAS pulsars(excluding two millisecond pulsars and one with the longest known spin period of 23.5 s).We find one candidate counterpart to PSR J1017+30,which should be searched for theγ-ray pulsation signal once its timing solution is available.For other LOTAAS pulsars,we derive their 0.3-500 GeV flux upper limits.In order to compare the LOTAAS pulsars with the knownγ-ray pulsars,we also derive the 0.3-500 GeVγ-ray fluxes for 112 of the latter contained in the Fermi LAT fourth source catalog.Based on the properties of theγ-ray pulsars,we derive upper limits on the spin-down luminosities of the LOTAAS pulsars.The upper limits are not very constraining but help suggest that most of the LOTAAS pulsars probably have<10^(33) erg s^(-1) spin-down luminosities and are not expected to be detectable with Fermi LAT.展开更多
The interrelationship between human life and death at the end of the XX and beginning of the XXI centuries is the topic of this study. The aim of the study is to study links between time, Solar (SA), Geomagnetic (GMA)...The interrelationship between human life and death at the end of the XX and beginning of the XXI centuries is the topic of this study. The aim of the study is to study links between time, Solar (SA), Geomagnetic (GMA) and Cosmic Ray (CRA) (Neutron) activity and monthly deaths distribution from all and six subgroups of death causes in years 1990-2009 for ad-ditional clarification of the role of exogenic factors in human homeostasis. Methods and patients: 850304 deaths (44657 men, 400647 woman) and 6 subgroups were studied in 240 consecutive months in the Re-public of Lithuania in relation to the months of year (1 - 12), 4 indices of SA (Sunspot number and Solar Flux), 3 indices of GMA (planetary and regional for the Middle Latitudes), and CRA described by Neutron activity on the Earth's surface-remains of crushed atoms in the high space levels and measured by Imp/min. The cosmophysical data came from Space Science Institutions in the USA, Russia and Finland. Statistical analysis of the results for monthly comparison are presented. Results: It was a significant and inverse relationship of monthly deaths number for both gender with CRA and SA, less with GMA. It was a significant drop of deaths from IHD and sui-cides. Oncology deaths also show similarity in their timing with other groups. A strong inverse rela-tionship was seen in monthly death number from IHD and Stroke. (r = -0.76, p < 0.0001), woman show more seasonality in death's distribution. Most deaths show annual rhythm with acrophase in February. Only Suicide pick appears in the summer months. Conclusion: at the beginning of the XXI century, in addition to accepted risk factors, environmental physical activity is linked to timing of death. Cosmic Ray (Neutron) activity is one of the main regulators of this relationship. Stroke related deaths are becoming a more prominent cause in the collection of car-diovascular deaths. Suicide related deaths show a drop, possibly related to a massive trend for immi-gration in the high risk group of the population. The precise mechanism of action of the studied physical factors needs additional studies.展开更多
To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring(DNFM) system based on the peripheral component interconnectio...To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring(DNFM) system based on the peripheral component interconnection(PCI) e Xtension for Instrumentation express(PXIe) bus was designed.This system comprises a charge-sensitive preamplifier and a field programmable gate array(FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9×10^8cm^-2s^-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A.展开更多
With the successful launch of Swift satellite, more and more data of early X-ray afterglows from short gamma-ray bursts have been collected. Some interesting features such as unusual afterglow light curves and unexpec...With the successful launch of Swift satellite, more and more data of early X-ray afterglows from short gamma-ray bursts have been collected. Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed. Especially, in some cases, there is a flat segment in the X-ray afterglow light curve. Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine. We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars. We check this model with the short GRB 060313. Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.展开更多
The purpose of this experiment is to investigate the dynamics of the intensity of cosmic ray flows and to obtain the energy spectrum of solar cosmic rays according to the data of measurements of neutron monitors at th...The purpose of this experiment is to investigate the dynamics of the intensity of cosmic ray flows and to obtain the energy spectrum of solar cosmic rays according to the data of measurements of neutron monitors at the height of 3,340, 1,700, 800 meters above the sea level. Also the estimation of energy spectrum of cosmic rays flows during the disturbances of solar activity (GLE) was made.展开更多
Distance measurement of gamma-ray pulsars is a current challenge in pulsar studies.The Large Area Telescope(LAT) aboard the Fermi gamma-ray observatory discovered more than 70 gamma-ray pulsars including 24 new gamm...Distance measurement of gamma-ray pulsars is a current challenge in pulsar studies.The Large Area Telescope(LAT) aboard the Fermi gamma-ray observatory discovered more than 70 gamma-ray pulsars including 24 new gamma-selected pulsars with almost no distance information.We study the relation between gammaray emission efficiency(η=Lγ/E˙) and pulsar parameters for young radio-selected gamma-ray pulsars with known distance information in the first gamma-ray pulsar catalog reported by Fermi/LAT.We have introduced three generation-order parameters to describe the gamma-ray emission properties of pulsars,and find a strong correlation of η-ζ3,a generation-order parameter which reflectsγ-ray photon generation in the pair cascade processes induced by magnetic field absorption in a pulsar's magnetosphere. A good correlation of η-BLC,the magnetic field at the light cylinder radius,is also found.These correlations are the distance indicators in gamma-ray pulsars used to evaluate distances for gamma-selected pulsars.Distances of 25 gamma-selected pulsars are estimated,which could be tested by other distance measurement methods.The physical origin of the correlations may also be interesting for pulsar studies.展开更多
Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic fie...Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic field and apply it to explain pulsed γ-ray properties of the Crab pulsar. Our results show that the observed γ-ray energy-dependent light curves, which almost align with the radio light curve and phase averaged spectrum for the Crab pulsar, are reproduced well.展开更多
中子探测技术广泛用于国土安全、核材料安全检测以及高能物理等领域,由于3He资源紧缺,近年来急需开发出能够同时甄别中子/伽马的新型闪烁晶体,Cs_(2)LaLiBr_(6):Ce(CLLB:Ce)晶体具有良好的中子/伽马甄别能力、优异的能量分辨率以及高的...中子探测技术广泛用于国土安全、核材料安全检测以及高能物理等领域,由于3He资源紧缺,近年来急需开发出能够同时甄别中子/伽马的新型闪烁晶体,Cs_(2)LaLiBr_(6):Ce(CLLB:Ce)晶体具有良好的中子/伽马甄别能力、优异的能量分辨率以及高的光输出,但其中子/伽马甄别性能有待进一步提高。本研究采用垂直布里奇曼法成功生长了Zr^(4+)共掺杂的CLLB:Ce晶体。通过不同表征手段研究了Zr^(4+)共掺杂CLLB:Ce晶体的结构和组分,结果表明Zr^(4+)成功掺入基质材料且对基质晶体结构不产生明显的影响,Zr^(4+)共掺杂后没有产生新的发光中心,紫外衰减时间约为27.0 ns,仍具有较快的荧光衰减。Zr^(4+)共掺杂CLLB:Ce晶体的品质因子(Figure of Merit,FOM)从1.2提高到1.5,表明其中子/伽马甄别能力得到改善。结合热稳定性和闪烁衰减时间,探讨了衰减时间对FOM的影响机制,Zr^(4+)共掺杂可以抑制浅电子陷阱和Vk中心,减少电子捕获和脱陷过程,使Ce^(3+)直接捕获的概率大大增加,从而表现出更快的衰减速率。本研究显示,Zr^(4+)共掺杂CLLB:Ce晶体在中子/伽马探测领域具有潜在的应用前景。展开更多
基金supported by the National Natural Science Foundation of China(Nos.4210040255,U19A2086)the Sichuan Science and Technology Program(No.2021JDRC0108)。
文摘In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.
基金supported by the Instrument Developing Project of the Chinese Academy of Sciences(No.29201707)
文摘An adaptable and compact fast pulse sampling module was developed for the neutron–gamma discrimination. The developed module is well suited for low-cost and low-power consumption applications. It is based on the Domino Ring Sampler 4(DRS4) chip, which offers fast sampling speeds up to 5.12 giga samples per second(GSPS) to digitize pulses from front-end detectors. The high-resolution GSPS data is useful for obtaining precise real-time neutron–gamma discrimination results directly in this module. In this study, we have implemented real-time data analysis in a field programmable gate array. Real-time data analysis involves two aspects: digital waveform integral and digital pulse shape discrimination(PSD). It can significantly reduce the system dead time and data rate processed offline. Plastic scintillators(EJ-299-33), which have proven capable of PSD, were adopted as neutron detectors in the experiments. A photomultiplier tube(PMT)(model #XP2020) was coupled to one end of a detector to collect the output light from it. The pulse output from the anode of the PMT was directly passed onto the fast sampling module. The fast pulse sampling module was operated at 1 GSPS and 2 GSPS in these experiments, and the AmBe-241 source was used to examine the neutron–gamma discrimination quality. The PSD results with different sampling rates and energy thresholds were evaluated. The figure of merit(FOM) was used to describe the neutron–gamma discrimination quality. The best FOM value of 0.91 was obtained at 2 GSPS and 1 GSPS sampling rates with an energy threshold of 1.5 MeV_(ee)(electron equivalent).
基金supported by the National Natural Science Foundation of China(Nos.51472048,50774022)the Key Laboratory Project of Liaoning Province Education Office(No.LZ 2014-022)
文摘In this study, the mass attenuation coefficient of boron-containing ores in the Liaoning province of China was calculated using Win XCOM software to investigate the shielding effectiveness of these ores against gamma rays. The mass attenuation coefficients were also calculated using MCNP-4 B code and compared with Win XCOM results; consequently, a good consistency between the results of Win XCOM and MCNP-4 B was observed. Furthermore, the G-P fitting method was used to evaluate the values of exposure buildup factor(EBF) in the energy range of 0.015–15 Me V up to 40 mean free paths. Among the selected ores, boron-bearing iron concentrate ore(M3)was determined to be the best gamma ray shielding ore owing to its higher values of mass attenuation coefficient and equivalent atomic number and lower value of EBF.Moreover, American Evaluated Nuclear Data File(ENDF/B-VII) was used to analyze the shielding effectivenessagainst thermal neutrons. It was determined that Szaibelyite(M2) is the best thermal neutron shielding material.This study would be useful for demonstrating the potential of boron-containing ores for applications in the field of nuclear engineering and technology.
文摘In April 2017, a mini neutron monitor (NM) was installed at King Abdulaziz City for Science and Technology (KACST) central Saudi Arabia (Riyadh;cut-off rigidity, Rc = 14.4 Gv) for continuous observation of the cosmic ray (CR) neutrons. The detector was built as a major aspect of the international scientific joint effort between the Centre of Space Research (North-West University, Potchefstroom, South Africa) and KACST. The recorded data correspond to low energy neutrons that primarily have energies lower than 20 GeV. In this paper, a brief description about the mini NM detector will be given. The influence of atmospheric pressure on the recorded CR neutrons was studied and the barometric coefficient was calculated and used to eliminate the pressure effects from the measured data. The obtained coefficient was consistent with those previously obtained by several investigators. The daily variation of the CR neutron was studied and characterized. Short-term CR periodicities, such as the 27-day period, and its two harmonics, were identified. The obtained periodicities are in agreement with those reported by different researchers. The obtained results from this detector have been compared to the existing 1 m<sup>2</sup> scintillator detector showing comparable results. Long-term data from this detector will be of incredible significance to the research community to investigate several types of CR variations resulting from solar activity at such high cut off rigidity site.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(No.12075308).
文摘The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.
文摘In recent years, many studies were published describing a wide scope of changes related to extreme (stormy) geomagnetic activity. In some countries, prediction of such days is a part of weather prediction information. A number of risk factors like blood coagulation parameters, arterial blood pressure, inflammation markers, and some blood proteins were changing at days of GMA storms. Concomitant studies were published on an inverse phenomenon-increased cardiovascular event at days of Zero GMA, accompanied by high Space Neutron activity on the Earth’s surface—a marker of high Cosmic Ray activity. The aim of this study was to compare two groups of Acute Cardiovascular Events (ACE)—Acute Myocardial Infarction (AMI) and deaths from Ischemic Heart Disease (IHD) at days of extreme Cosmic Ray (CRA)-Neutron activity. Patients & methods: 4749 days at years 2000-2012 were studied considering ACE in a 3000 bed hospital in Kaunas, Lithuania. Cosmophysical data of this period was obtained from USA, Russia, and Finland. ACE was calculated at day of extreme High levels of CRA and following 48 hours. 13629 AMI and 3128 deaths from IHD were included. Results: It was a significant rise in AMI morbidity at day of high CRA (Neutron) activity (≥9300 imp/min). By analysis for each of gender, and patients age groups that were significant difference of AMI for all patients and male >65 y. old at Neutron activity ≥9400 imp/min (p = 0.048;p = 0.03), both gender > 65 y. old at Neutron activity >9500 (p = 0.078) and female >65 y. at Lag 2 (p = 0.07). For deaths from IHD, it was a significant rise at Neutron activity below 9300 imp/min (662 days (13.8%) were above the average of the full observation time-8935 ± 538.083)). Conclusion: At days of high CRA-Neutron activity, it was significantly more AMI. For IHD mortality was higher, but at lower Neutron activity—closer to average Neutron activity and higher GMA.
文摘An experimental system aimed at n-γ discrimination using the zero-crossing method with a φ3’’×2’’ BC501A liquid scintillation detector was established and tested with an Am-Be neutron source. Two-dimensional plots of energy versus zero-crossing time were obtained. The quality of n-γ discrimination was checked by the figure-of-merit (FOM), the neutron peak-to-valley ratio, and the proportion of leaked neutrons over all neutron events. The performance of n-γ discrimination in terms of FOM was compared with previous work done by other groups. The n-γ discrimination in four different energy regions with an interval of 0.1 MeV between 0.3 MeV and 0.7 MeV was studied, and the results indicate that the n-γ discrimination threshold can go down to 0.4 MeV.
基金supported by the National Key R&D Program of China(No.2017YFA0403702)the Instrument Developing Project of the Chinese Academy of Sciences(No.YZ201512)the National Natural Science Foundation of China(Nos.11635012,11405191,and11205036)
文摘A small-angle scattering neutron spectrometer for material research is under construction at the China Spallation Neutron Source. An intervening neutron beam monitor behind the sample is needed to measure the beam intensity in order to reduce the measurement uncertainty caused by beam fluctuation. Considering the mobility requirement and limited space, we proposed a compact monitor using a type of lithium-glass scintillator provided by China Building Materials Academy. Its performance was studied experimentally using ^(252)Cf and ^(60)Co sources.The neutron light yield of the selected scintillator was measured to be 5:3 × 10~3 photons/neutron. The feasibility of n-gamma discrimination using the charge comparison method was verified. By using the Geant4 toolkit, themonitor was modeled with precise physical processes including neutron tracking, scintillation, and optical photon transmission. The gamma sensitivity and detection efficiency were investigated in the simulation. It was concluded that a 0.5-mm-thick lithium-glass scintillator with natural lithium is an appropriate choice to satisfy both the neutron detection efficiency and gamma elimination requirements.
基金supported by the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)National Natural Science Foundation of China(No.11505216),Educational Commission of Hunan Province of China(No.19B488)Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444 and 2020RC3054).
文摘To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross section spectrometer(NTOX), a dedicated lithium-containing scintillation detector has been developed on the Back-n beam line at the China Spallation Neutron Source. The Fast Scintillator-based Neutron Total Cross Section(FAST) spectrometer has been designed based on a Cs2Li La Br6(CLLB) scintillator considering the γ-ray flash and neutron environment on the Back-n beam line. The response of the CLLB scintillator to neutrons and γ-rays was evaluated with different 6Li/7 Li abundance ratios using Geant4. The neutron-γdiscrimination performance of the CLLB has been simulated considering different scintillation parameters, physical designs,and light readout modes. A cubic 6Li-enriched( > 90%) CLLB scintillator, which has a thickness of 4-9 mm and side length of no less than 50 mm to cover the Φ 50 mm neutron beam at the spectrometer position, has been proposed coupling to a side readout SiPM array to construct the FAST spectrometer. The developed simulation techniques for neutron-γ discrimination performance could provide technical support for other neutron-induced reaction measurements on the Back-n beam line.
基金The project supported by the National Natural Science Foundation of China(No.10175021)the Retraining Foundation of the Southwestern Institute of Physics for Talented Personnel
文摘The prototype neutron flux monitor consists of a high purity ^(235)U fission chamber detector and a'blank'detector,which is a fissile material free detector with the same dimension as the fission chamber detector to identify noise issues such as noise coming from gamma rays.The main parameters of the fission chamber assembly that have been measured in the laboratory are confirmed to approach the technological level of the International Thermonuclear Experimental Reactor(ITER)in the near future.This prototype neutron flux monitor will be further developed to become a neutron flux monitor suitable for the operation phase of D-D fusion on the ITER.
文摘The links of many medical-biological events with high levels of geomagnetic activity (GMA) are widely discussed. In recent years, several medical phenomena were described in inverse distribution by time with GMA. Also a concurrent to GMA and solar activity force-cosmic ray activity (CRA) and closely related high energy neutron and proton fluxes are studied as a forces dominating at low GMA and solar activity in relation to considered medical events. The aim of this study was to explore the distribution of some important medical events on days with “Zero” GMA levels, accompanied by high CRA (neutron activity). Medical event data of the Grand Baku region (more than 3 mln inhabitants), Azerbaijan, with daily distribution on the time 1 Dec. 2002-31 Dec. 2007 was compared to daily GMA Kp indices in general (Kp > 0, 1837 days) and 34 days daily GMA indices Kp = 0. Daily CRA data was also compared using neutron monitoring data from two stations. Daily averaged data and their standard deviations on the mentioned GMA levels were compared and statistical significance was established. Results revealed a significant rise in the number of emergencies (n = 1,567,576) and total deaths number (n = 46,360) at the days of “Zero” GMA level. These days were accompanied by significant rise of CRA (neutron activity). For Sudden Cardiac Deaths (SCD, n = 1615) and cerebral stroke (CVA, n =10,054) the increase achieved strong trend to significance level. Acute Myocardial Infarction occurrence (morbidity) and trauma were also absolutely more registered at days with “Zero” GMA level, despite the small number of such days. The average Infection numbers show an inverse relationship with absolutely high registry at the “Zero” GMA level days. Study linking environmental physical activity levels and the human medical data shows that geomagnetic field variations accompanied by the increased level of cosmic ray activity, can have either direct or indirect adverse effects on human health and physiology, even when the magnitude of the geomagnetic field disturbance is extremely small or even is equal to zero. On days of “Zero” daily Kp indices describing Geomagnetic Activity, accompanied by high Cosmic Ray Activity (neutron activity), more medical emergencies and total death number (daily) occurred. Sudden Cardiac Deaths and Cerebral Stroke numbers show a strong trend to significant rise. Absolute increase of number of Acute Myocardial Infarction and less Infections, not achieving statistical significance, was also observed. These results are additional data for considering Cosmic Ray Activity (neutron activity) as an additional factor involved in time distribution of human medical events.
基金supported by the National Program on Key Research and Development Project (Grant No.2016YFA0400804)the National Natural Science Foundation of China (NSFC) (Nos.11373055,11633007 and U1738131)+1 种基金the CAS/SAFEA International Partnership Program for Creative Research Teamsthe NSFC (Nos.11573010,U1631103 and 11661161010)
文摘We report the results from our analysis of Fermi Large Area Telescope (LAT) data for the transitional millisecond pulsar binary PSR J1023+0038. The time period of the data is nearly 9 yr, and that after the source's transition, in June 2013 from the disk-free state to the active state of having an accretion disk, is approximately 4 yr. We identify a high-energy 〉5.5 GeV component in the source's spectrum in the active state, and find this component is only significantly detected in half of the orbital phase centered at the descending node (when the pulsar is moving towards the Earth). Considering the pulsar scenario proposed for multi-frequency emission from the source, in which the pulsar is still active and a cold-relativistic pulsar wind inverse-Compton scatters the photons from the accretion disk, we discuss the origin of the high-energy component. In order to explain the observed spectrum, a power-law distribution of particles, with an index of ~3, in the pulsar wind is required, while the orbital variations are possibly due to changes in power-law index as a function of orbital phase.
基金supported by the National Program on Key Research and Development Project(Grant No.2016YFA0400804)the National Natural Science Foundation of China(Grant Nos.11633007 and U1738131)support by the Original Innovation Program of the Chinese Academy of Sciences(E085021002)。
文摘The LOw-Frequency ARray(LOFAR)has recently conducted a survey(LOFAR Tied-Array Allsky Survey;LOTAAS)for pulsars in the Northern hemisphere that resulted in discoveries of 73 new pulsars.For the purpose of studying the properties of these pulsars,we search for theirγ-ray counterparts using the all-sky survey data obtained with the Large Area Telescope(LAT)onboard the Fermi Gamma-Ray Space Telescope(Fermi).We analyze the LAT data for 70 LOTAAS pulsars(excluding two millisecond pulsars and one with the longest known spin period of 23.5 s).We find one candidate counterpart to PSR J1017+30,which should be searched for theγ-ray pulsation signal once its timing solution is available.For other LOTAAS pulsars,we derive their 0.3-500 GeV flux upper limits.In order to compare the LOTAAS pulsars with the knownγ-ray pulsars,we also derive the 0.3-500 GeVγ-ray fluxes for 112 of the latter contained in the Fermi LAT fourth source catalog.Based on the properties of theγ-ray pulsars,we derive upper limits on the spin-down luminosities of the LOTAAS pulsars.The upper limits are not very constraining but help suggest that most of the LOTAAS pulsars probably have<10^(33) erg s^(-1) spin-down luminosities and are not expected to be detectable with Fermi LAT.
文摘The interrelationship between human life and death at the end of the XX and beginning of the XXI centuries is the topic of this study. The aim of the study is to study links between time, Solar (SA), Geomagnetic (GMA) and Cosmic Ray (CRA) (Neutron) activity and monthly deaths distribution from all and six subgroups of death causes in years 1990-2009 for ad-ditional clarification of the role of exogenic factors in human homeostasis. Methods and patients: 850304 deaths (44657 men, 400647 woman) and 6 subgroups were studied in 240 consecutive months in the Re-public of Lithuania in relation to the months of year (1 - 12), 4 indices of SA (Sunspot number and Solar Flux), 3 indices of GMA (planetary and regional for the Middle Latitudes), and CRA described by Neutron activity on the Earth's surface-remains of crushed atoms in the high space levels and measured by Imp/min. The cosmophysical data came from Space Science Institutions in the USA, Russia and Finland. Statistical analysis of the results for monthly comparison are presented. Results: It was a significant and inverse relationship of monthly deaths number for both gender with CRA and SA, less with GMA. It was a significant drop of deaths from IHD and sui-cides. Oncology deaths also show similarity in their timing with other groups. A strong inverse rela-tionship was seen in monthly death number from IHD and Stroke. (r = -0.76, p < 0.0001), woman show more seasonality in death's distribution. Most deaths show annual rhythm with acrophase in February. Only Suicide pick appears in the summer months. Conclusion: at the beginning of the XXI century, in addition to accepted risk factors, environmental physical activity is linked to timing of death. Cosmic Ray (Neutron) activity is one of the main regulators of this relationship. Stroke related deaths are becoming a more prominent cause in the collection of car-diovascular deaths. Suicide related deaths show a drop, possibly related to a massive trend for immi-gration in the high risk group of the population. The precise mechanism of action of the studied physical factors needs additional studies.
基金support by the HL-2A experimental teamsupported by National Natural Science Foundation of China(Nos.11375195,11575184)National Magnetic Confinement Fusion Energy Development Research(No.2013GB104003)
文摘To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring(DNFM) system based on the peripheral component interconnection(PCI) e Xtension for Instrumentation express(PXIe) bus was designed.This system comprises a charge-sensitive preamplifier and a field programmable gate array(FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9×10^8cm^-2s^-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A.
基金Supported by the National Natural Science Foundation of China.
文摘With the successful launch of Swift satellite, more and more data of early X-ray afterglows from short gamma-ray bursts have been collected. Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed. Especially, in some cases, there is a flat segment in the X-ray afterglow light curve. Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine. We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars. We check this model with the short GRB 060313. Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.
文摘The purpose of this experiment is to investigate the dynamics of the intensity of cosmic ray flows and to obtain the energy spectrum of solar cosmic rays according to the data of measurements of neutron monitors at the height of 3,340, 1,700, 800 meters above the sea level. Also the estimation of energy spectrum of cosmic rays flows during the disturbances of solar activity (GLE) was made.
基金supported by the National Natural Science Foundation of China(Grant Nos.10803009,10833003 and 11073030)
文摘Distance measurement of gamma-ray pulsars is a current challenge in pulsar studies.The Large Area Telescope(LAT) aboard the Fermi gamma-ray observatory discovered more than 70 gamma-ray pulsars including 24 new gamma-selected pulsars with almost no distance information.We study the relation between gammaray emission efficiency(η=Lγ/E˙) and pulsar parameters for young radio-selected gamma-ray pulsars with known distance information in the first gamma-ray pulsar catalog reported by Fermi/LAT.We have introduced three generation-order parameters to describe the gamma-ray emission properties of pulsars,and find a strong correlation of η-ζ3,a generation-order parameter which reflectsγ-ray photon generation in the pair cascade processes induced by magnetic field absorption in a pulsar's magnetosphere. A good correlation of η-BLC,the magnetic field at the light cylinder radius,is also found.These correlations are the distance indicators in gamma-ray pulsars used to evaluate distances for gamma-selected pulsars.Distances of 25 gamma-selected pulsars are estimated,which could be tested by other distance measurement methods.The physical origin of the correlations may also be interesting for pulsar studies.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.11173020 and 11433004)the Top Talents Program of Yunnan Province
文摘Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic field and apply it to explain pulsed γ-ray properties of the Crab pulsar. Our results show that the observed γ-ray energy-dependent light curves, which almost align with the radio light curve and phase averaged spectrum for the Crab pulsar, are reproduced well.
文摘中子探测技术广泛用于国土安全、核材料安全检测以及高能物理等领域,由于3He资源紧缺,近年来急需开发出能够同时甄别中子/伽马的新型闪烁晶体,Cs_(2)LaLiBr_(6):Ce(CLLB:Ce)晶体具有良好的中子/伽马甄别能力、优异的能量分辨率以及高的光输出,但其中子/伽马甄别性能有待进一步提高。本研究采用垂直布里奇曼法成功生长了Zr^(4+)共掺杂的CLLB:Ce晶体。通过不同表征手段研究了Zr^(4+)共掺杂CLLB:Ce晶体的结构和组分,结果表明Zr^(4+)成功掺入基质材料且对基质晶体结构不产生明显的影响,Zr^(4+)共掺杂后没有产生新的发光中心,紫外衰减时间约为27.0 ns,仍具有较快的荧光衰减。Zr^(4+)共掺杂CLLB:Ce晶体的品质因子(Figure of Merit,FOM)从1.2提高到1.5,表明其中子/伽马甄别能力得到改善。结合热稳定性和闪烁衰减时间,探讨了衰减时间对FOM的影响机制,Zr^(4+)共掺杂可以抑制浅电子陷阱和Vk中心,减少电子捕获和脱陷过程,使Ce^(3+)直接捕获的概率大大增加,从而表现出更快的衰减速率。本研究显示,Zr^(4+)共掺杂CLLB:Ce晶体在中子/伽马探测领域具有潜在的应用前景。