We proposed a new laser analytical mode,which used the high-frequency laser ablation to deliberately obtain the peak-shape signal profile,combined with the linear regression calibration(LRC)method to calculate element...We proposed a new laser analytical mode,which used the high-frequency laser ablation to deliberately obtain the peak-shape signal profile,combined with the linear regression calibration(LRC)method to calculate elemental or isotopic ratios.In order to assess the performance of the new laser analytical mode for the application in the field of earth science,we systematically investigated the elemental quantitative analysis with high spatial resolution(10μm),rapid U-Pb dating in zircons and accurate Sr-Hf isotope analysis in geological samples.The new high-frequency laser analysis technology(20 Hz,100 pulses)reduced the limit of detection(LOD)of 25 elements to 0.005-0.16μg g^(-1) with crater diameters of 10μm,which are significantly lower(decrease to 2-20%)than previous researches.The quantitative analysis of five silicate glass reference materials showed that the precision and accuracy of the 25 trace elements(with the concentration ranging from 0.17 to 683μg g^(-1))were better than 16% and 15%,respectively.The new methods raised the analytical throughput of zircon U-Pb dating,Sr isotope ratios and Hf isotope ratios to 250 analyses per hour,144 analyses per hour and 120 analyses per hour in theory,while the analytical accuracy and precision were not affected.The detailed investigations showed that the proposed new laser analytical mode has good application effects in the field of earth sciences.展开更多
In this article,we suggest a new form of modified Kudryashov’s method(NMK)to study the Dual-mode Sawada Kotera model.We know very well that the more the solutions depend on many constants,the easier it is to study th...In this article,we suggest a new form of modified Kudryashov’s method(NMK)to study the Dual-mode Sawada Kotera model.We know very well that the more the solutions depend on many constants,the easier it is to study the model better by observing the change in the constants and what their impact is on the solutions.From this point of view,we developed the modified Kudryashov method and put it in a general form that contains more than one controllable constant.We have studied the model in this way and presented figures showing the correctness of what we hoped to reach from the proposed method.In addition to the results we reached,they were not sufficient,so we presented an extensive numerical study of this model using the finite differences method.We also came up with the local truncation error for the difference scheme is h^(6) k^(2)(1+k^(2)).In addition,the analytical solutions we reached were compared with the numerical solutions,and we presented many forms that show that the results we reached are a clear contribution to this field.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41973013,41730211)the Natural Science Foundation of Hubei Province(Grant No.2020CFA045)the Most Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant Nos.MSFGPMR04,MSFGPMR08)。
文摘We proposed a new laser analytical mode,which used the high-frequency laser ablation to deliberately obtain the peak-shape signal profile,combined with the linear regression calibration(LRC)method to calculate elemental or isotopic ratios.In order to assess the performance of the new laser analytical mode for the application in the field of earth science,we systematically investigated the elemental quantitative analysis with high spatial resolution(10μm),rapid U-Pb dating in zircons and accurate Sr-Hf isotope analysis in geological samples.The new high-frequency laser analysis technology(20 Hz,100 pulses)reduced the limit of detection(LOD)of 25 elements to 0.005-0.16μg g^(-1) with crater diameters of 10μm,which are significantly lower(decrease to 2-20%)than previous researches.The quantitative analysis of five silicate glass reference materials showed that the precision and accuracy of the 25 trace elements(with the concentration ranging from 0.17 to 683μg g^(-1))were better than 16% and 15%,respectively.The new methods raised the analytical throughput of zircon U-Pb dating,Sr isotope ratios and Hf isotope ratios to 250 analyses per hour,144 analyses per hour and 120 analyses per hour in theory,while the analytical accuracy and precision were not affected.The detailed investigations showed that the proposed new laser analytical mode has good application effects in the field of earth sciences.
文摘In this article,we suggest a new form of modified Kudryashov’s method(NMK)to study the Dual-mode Sawada Kotera model.We know very well that the more the solutions depend on many constants,the easier it is to study the model better by observing the change in the constants and what their impact is on the solutions.From this point of view,we developed the modified Kudryashov method and put it in a general form that contains more than one controllable constant.We have studied the model in this way and presented figures showing the correctness of what we hoped to reach from the proposed method.In addition to the results we reached,they were not sufficient,so we presented an extensive numerical study of this model using the finite differences method.We also came up with the local truncation error for the difference scheme is h^(6) k^(2)(1+k^(2)).In addition,the analytical solutions we reached were compared with the numerical solutions,and we presented many forms that show that the results we reached are a clear contribution to this field.