As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology beco...As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle.展开更多
With the widespread of new energy vehicles, charging piles have alsobeen continuously installed and constructed. In order to make the number of pilesmeet the needs of the development of new energy vehicles, this study...With the widespread of new energy vehicles, charging piles have alsobeen continuously installed and constructed. In order to make the number of pilesmeet the needs of the development of new energy vehicles, this study aims toapply the method of system dynamics and combined with the grey prediction theory to determine the parameters as well as to simulate and analyze the ratio ofvehicles to chargers. Through scenario analysis, it is predicted that by 2030, thisratio will gradually decrease from 1.79 to 1. In order to achieve this ratio as 1:1, itis necessary to speed up the construction of public charging station or privatecharging station. Due to global warming, the attitudes of countries towards fuelvehicles have become increasingly tough. There is huge uncertainty in the growthrate of electric vehicles. Therefore, it is recommended that the construction ofcharging station be deployed in advance to avoid hindering the development ofelectric vehicles in the future.展开更多
Speeding up the promotion of new energy vehicles is an important measure to optimize the energy structure,promote energy conservation and emission reduction,and develop the economy sustainability.The research uses a q...Speeding up the promotion of new energy vehicles is an important measure to optimize the energy structure,promote energy conservation and emission reduction,and develop the economy sustainability.The research uses a questionnaire survey to analyze the residents’willingness to purchase new energy vehicles in Jinan Gty of China,and utilizes the binomial logistic regression model and Global Moran's I to explain the impact of three factors(including responden ts'personal characteristics and subjective cognition,products,and social environment)on the purchase willingness of new energy vehicles.According to the survey,75.12%of the responden ts consider buying new energy vehicles in the future,but only 11.66%of the respondents know new energy vehicles well.It can be seen that the respondents in Jinan City generally have an insufficient understanding of new energy vehicles.It may lead to a decline in residents’trust in new energy vehicles,which will in turm affect their purchase willingness.Based on the survey,we find that women who live far from the city center enjoy high incomes and have a low-carbon awareness,generally exhibit a higher willingness to purchase new energy vehicles.Spatial distribution of the purchase willingness has certain aggregation characteristics,showing a positive spatial correlation pattern.Purchase willingness has a certain positive diffusion effect in space,and areas with a higher purchase willingness have a positive driving effect on their surrounding regions.Spatial distribution of the purchase willingness can be used as one of the breakthroughs in promoting new energy vehicles.In addition,safety,price,after-sales service,and infrastruicture of new energy vehicles are important determinants of people's purchase willingness.Among the types of subsidies,financial subsidy is most effective on the residents’purchase wilingness.Our research provides an impor tant information for the promotion of new energy vehicles in the region.展开更多
New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-...New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-sources heterogenous data for new energy vehicles and weak platform scalability,the framework of an intelligent decision support platform is proposed in this paper. The principle of software and hardware system is introduced. Hadoop is adopted as the software system architecture of the platform. Master-standby redundancy and dual-line redundancy ensure the reliability of the hardware system. In addition, the applications on the intelligent decision support platform in usage patterns recognition, energy consumption, battery state of health and battery safety analysis are also described.展开更多
The new energy vehicle(NEV)subsidy policy introduced in China in 2013 has significantly boosted the adoption and sales of NEVs,with sales increasing more than 40-fold.However,the mechanisms by which subsidy policies i...The new energy vehicle(NEV)subsidy policy introduced in China in 2013 has significantly boosted the adoption and sales of NEVs,with sales increasing more than 40-fold.However,the mechanisms by which subsidy policies influence the diffusion of NEVs in China remain unclear,posing challenges for governments to design future strategies.Thus,the primary objective of this paper is to empirically examine the impact of subsidy policy on the diffusion of new energy vehicles and to forecast future development trends using the grey Bass model,a predictive model suited for new product adoption forecasting.Our findings suggest that while the sales of NEVs in China will continue to rise,the growth rate will slow.Key milestones include the first inflection points for new energy vehicles and battery electric vehicles,anticipated in 2025 and 2024 respectively,with peak sales expected in 2028 and 2027.These insights are crucial for manufacturers,enabling them to adjust their production strategies timely and enhance their resilience in the market.展开更多
In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network techno...In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.展开更多
1.The overall development of new energy vehicles was good in 2017.In early 2017,the new energy vehicle market was greatly affected by major policy adjustments such as drastic decline in new energy vehicle subsidies an...1.The overall development of new energy vehicles was good in 2017.In early 2017,the new energy vehicle market was greatly affected by major policy adjustments such as drastic decline in new energy vehicle subsidies and re-examination of the model catalogue.But China’s determination to vigorously promote the healthy development of the new energy vehicle industry has not changed.In March and April。展开更多
This paper presents a review on the recent research and technical progress of electric motor systems and electric powertrains for new energy vehicles.Through the analysis and comparison of direct current motor,inducti...This paper presents a review on the recent research and technical progress of electric motor systems and electric powertrains for new energy vehicles.Through the analysis and comparison of direct current motor,induction motor,and synchronous motor,it is found that permanent magnet synchronous motor has better overall performance;by comparison with converters with Si-based IGBTs,it is found converters with SiC MOSFETs show significantly higher efficiency and increase driving mileage per charge.In addition,the pros and cons of different control strategies and algorithms are demonstrated.Next,by comparing series,parallel,and power split hybrid powertrains,the series-parallel compound hybrid powertrains are found to provide better fuel economy.Different electric powertrains,hybrid powertrains,and range-extended electric systems are also detailed,and their advantages and disadvantages are described.Finally,the technology roadmap over the next 15 years is proposed regarding traction motor,power electronic converter and electric powertrain as well as the key materials and components at each time frame.展开更多
This article takes 2016-2022 as the inspection period to construct an evaluation index system for the green development level of the new energy vehicle industry.The entropy method and comprehensive index are used to m...This article takes 2016-2022 as the inspection period to construct an evaluation index system for the green development level of the new energy vehicle industry.The entropy method and comprehensive index are used to measure the green development level of the new energy vehicle industry in Chongqing,and compared with neighboring provinces such as Yunnan,Guizhou,and Sichuan.Policy recommendations are proposed to promote the development of the new energy vehicle industry in Chongqing City.展开更多
New energy vehicles represent the inevitable trend of future development.Compared to traditional fuel vehicles,they are more energy-saving and environmentally friendly,effectively reducing air pollution and mitigating...New energy vehicles represent the inevitable trend of future development.Compared to traditional fuel vehicles,they are more energy-saving and environmentally friendly,effectively reducing air pollution and mitigating excessive exploitation of oil resources,a stance strongly supported by governments.However,new energy vehicles possess certain drawbacks in terms of price and usability compared to traditional counterparts.Therefore,external support is imperative for their development.This paper delineates four main sections:the background of new energy vehicle promotion and application,a comparative analysis of domestic and foreign promotion models,specific promotion suggestions,and future development prospects.By leveraging insights from economic analysis,the optimal promotion model for new energy vehicles is elucidated.展开更多
The diffusion of new energy vehicles(NEVs),such as battery electric vehicles(BEVs)and fuel cell vehicles(FCVs),is critical to the transportation sector's deep decarbonization.The cost of energy chains is an import...The diffusion of new energy vehicles(NEVs),such as battery electric vehicles(BEVs)and fuel cell vehicles(FCVs),is critical to the transportation sector's deep decarbonization.The cost of energy chains is an important factor in the diffusion of NEVs.Although researchers have addressed the technological learning effect of NEVs and the life cycle emissions associated with the diffusion of NEVs,little work has been conducted to analyze the life cycle costs of different energy chains associated with different NEVs in consideration of technological learning potential.Thus,relevant information on investment remains insufficient to promote the deployment of NEVs.This study proposes a systematic framework that includes various(competing or coordinated)energy chains of NEVs formed with different technologies of power generation and transmission,hydrogen production and transportation,power-to-liquid fuel,and fuel transportation.The levelized costs of three typical carbon-neutral energy chains are investigated using the life cycle cost model and considering the technological learning effect.Results show that the current well-to-pump levelized costs of the energy chains in China for BEVs,FCVs,and internal combustion engine vehicles(ICEVs)are approximately 3.60,4.31,and 2.21 yuan/GJ,respectively,and the well-to-wheel levelized costs are 4.50,6.15,and 7.51 yuan/GJ,respectively.These costs primarily include raw material costs and they vary greatly for BEVs and FCVs from resource and consumer costs.In consideration of the technological learning effect,the energy chains'well-to-wheel levelized costs are expected todecrease by 24.82%for BEVs,27.12%for FCVs,and 19.25%for ICEVs by 2060.This work also summarizes policy recommendations on developing energy chains to promote the diffusion of NEVs in China.展开更多
New energy vehicles play a positive role in reducing carbon emissions.To improve the dynamic performance and durability of vehicle powertrain,the hybrid energy storage system of“fuel cell/power battery plus super cap...New energy vehicles play a positive role in reducing carbon emissions.To improve the dynamic performance and durability of vehicle powertrain,the hybrid energy storage system of“fuel cell/power battery plus super capacitor”is more used in new energy vehicles.Bidirectional DC–DC converters with wide voltage conversion range are essential for voltage matching and power decoupling between super capacitor and vehicle bus,helping to improve the low input voltage characteristics of super capacitors and realize the recovery of feedback energy.In recent years,the topologies of bidirectional converters have been widely investigated and optimized.Aiming to obtain bidirectional DC–DC converters with wide voltage conversion range suitable for hybrid energy storage system,a review of the research status of non-isolated converters based on impedance networks and isolated converters based on transformer are presented.Additionally,an evaluation system for bidirectional DC–DC topologies for hybrid energy storage system is constructed,providing a reference for designing bidirectional DC–DC converters.The performance of eight typical non-isolated converters and seven typical isolated converters are comprehensively evaluated by using this evaluation system.On this basis,issues about DC–DC converters for hybrid energy storage system are discussed,and some suggestions for the future research directions of DC–DC converters are proposed.The optimization of bidirectional DC–DC converters for hybrid energy storage system from the perspectives of wide bandgap device application,electromagnetic compatibility technology and converter fault diagnosis strategies is the main research direction.展开更多
The development of the new energy vehicle industry has become a key force driving the goals of carbon peak and carbon neutralization.To better guide future strategies,this study investigates the dual impact of subsidy...The development of the new energy vehicle industry has become a key force driving the goals of carbon peak and carbon neutralization.To better guide future strategies,this study investigates the dual impact of subsidy and dual-integral policies on the performance of new energy vehicle enterprises.This study first theorizes the influential mechanism according to the institutional-based approach and technical innovation theory,and then collects data from listed companies in the new energy vehicle industry from 2016 to 2020.The hypotheses are examined using a two-way fixed-effects model.The findings show that:(1)subsidy policies are can still improve enterprise performance,but not through green technology innovation;(2)the dual-credit policy can improve enterprise performance through green technology innovation;and(3)under current policy conditions,with subsidies declining annually,the interaction effects between the subsidy and dual-integral policies will also decrease.Thus,this study suggests that non-monetary industrial policy,represented by the dual credit policy is a more effective alternative to government subsidies.展开更多
In order to improve the heat dissipation capability of motor controller for new energy vehicles,the water cooled radiator with multiple channels is optimized in this paper.The heat conduction between the heat source I...In order to improve the heat dissipation capability of motor controller for new energy vehicles,the water cooled radiator with multiple channels is optimized in this paper.The heat conduction between the heat source IGBT and the radiator,the convective heat transfer between the radiator and the coolant,the mechanical strength and the manufacturing cost are comprehensively considered during the optimization process.The power loss and thermal resistance of the IGBT unit are calculated at first,and finite element model of the radiator is established.On this basis,multi-physics coupling analysis of the water cooled radiator is carried out.Secondly,the sensitivity analysis is applied to verify the influence of structural parameters on the heat dissipation performance of the radiator system.The influence of coolant inlet velocity v,number of cooling ribs n,height of radiator ribs H on the maximum temperature rise T,the temperature difference ΔT between phase U and W,and the coolant pressure lossΔP are analyzed in depth,and the optimal range of the structural parameters for heat dissipation is obtained.Finally,an experimental platform was set up to verify the performance of the proposed structure of water cooled radiator for motor controller of new energy vehicle.The results show that the heat dissipation capability of the proposed radiator is improved compared with the initial design.展开更多
With the new round of scientific and technological revolution and industrial transformation,China has posited the direction of“new infrastructure”in 2020.As one of the seven major industries of the“new infrastruct...With the new round of scientific and technological revolution and industrial transformation,China has posited the direction of“new infrastructure”in 2020.As one of the seven major industries of the“new infrastructure”,the charging infrastructure(CI)industry not only supports the upgrade of the new energy vehicle industry but also provides developing platforms for emerging industries,such as wireless charging,energy storage,smart microgrid,and new energy consumption.Therefore,the government’s supporting role is crucial for the CI industry.To effectively explore the effectiveness of government’s subsidy policy in the CI industry and promote its healthy development,we employed a game model and discussed the government's evolution process of different game strategies between CI and battery-swapping station(BSS)operators in this study.First,China's government subsidies for the electric vehicle(EV)industry were classified into CIs and BSSs.The subsidies obtained by the CI operators were operating subsidies,whereas those obtained by BSSs were investment subsidies.Second,a game model was constructed,involving the government,operators,and users.The model used backward induction to seek the refined Nash equilibrium solution for CIs and BSS operators.The Nash equilibrium solution indicated that the optimal investment amount and BSS quantity of the operator were positively correlated with the government subsidy intensity.When the profitability of the operators increased and the amount of the subsidies increased,consumers’willingness to use EVs increased and the policy effects were closely related to the benefits of government management.The decisions made by either the users or the operators were inversely related to the operators’management efficiency.Besides,the subsidy policy was affected by the government management.Therefore,in the implementation stage of the government’s future subsidy policies,the government needs to innovate and improve management effectiveness.The government could use subsidy policies as a driving force for developing the CI industry to build a comprehensive ecosystem of the industry,which is also the next key point for the government to promote the development of the CI industry in the future.展开更多
New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper us...New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.展开更多
In the context of global carbon neutrality,new energy vehicle promotion(NEVP)has become an important means of reducing carbon emissions.This paper constructs a theoretical model and uses panel data on NEVP in 21 count...In the context of global carbon neutrality,new energy vehicle promotion(NEVP)has become an important means of reducing carbon emissions.This paper constructs a theoretical model and uses panel data on NEVP in 21 countries from 2012 to 2018 to empirically examine the green effect of NEVP.The results indicate the following:(1)NEVP significantly reduces greenhouse gases emissions,and the green effect can be transmitted and diffused through a direct path.(2)Replacing fuel-fired vehicles and accelerating the end-of-life vehicle scrapping process significantly conducted the green effect,and aggravating traffic congestion was not statistically significant.(3)The transmission mechanism of the green effect is regulated by regional economic heterogeneity.In regions with better development of fuel-fired vehicles,the transmission of the green effect is subject to the elimination of fuel-fired vehicles and traffic congestion governance,and the transmission efficiency is low.However,regions with a relatively weak fuel-fired automobile industry foundation show a strong“advantage of backwardness”,and the green effect is more prominent.This means that global NEVP should be further accelerated to achieve the green effect and the goal of global carbon neutrality.展开更多
Based on the Baa S model,a new energy vehicle supply chain game model composed of battery-swapping operators and vehicle manufacturers was constructed,and the corresponding optimal decisions of the supply chain member...Based on the Baa S model,a new energy vehicle supply chain game model composed of battery-swapping operators and vehicle manufacturers was constructed,and the corresponding optimal decisions of the supply chain members were obtained.The influence of related parameters on the equilibrium results was analyzed,and the Matlab was used for example analysis.The results show that:(1)The increase in the average consumer commuter mileage over the life of the vehicle can promote the increase in the demand for new energy vehicles and the profits of the supply chain members,which has a driving effect on the development of the battery swap industry.(2)Consumer sensitivity coefficient to the price of battery swap has a negative impact on battery-swapping price,new energy vehicle price,market demand for new energy vehicles,and profits of vehicle manufacturers and battery-swapping operators.展开更多
New energy vehicle (NEV) refers to a vehicle which is fully or partially powered by electricity instead of petrol. Since petrol price grows constantly and people become more environmentally conscious, people have show...New energy vehicle (NEV) refers to a vehicle which is fully or partially powered by electricity instead of petrol. Since petrol price grows constantly and people become more environmentally conscious, people have shown their numerous interests on the NEV. A lot of previous studies have paid more attention on vehicle itself, such as the high technology of the in-car assistance systems, and the pros and cons of electricity as a new energy for vehicle. However, the quality of vehicle should not only be limited to these aspects. Therefore, in this study, author focus more on the relationship between the vehicle and users and gives a brief introduction of some user interface problems through investigating one of the top selling types of NEV, Han EV belonging to BYD company, in terms of Standardize symbol, Gestalt grouping principles, Design of Visual display, Working memory and attention. In addition, corresponding improvement advice will also be provided in the later part of this work.展开更多
The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ...The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.展开更多
文摘As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle.
文摘With the widespread of new energy vehicles, charging piles have alsobeen continuously installed and constructed. In order to make the number of pilesmeet the needs of the development of new energy vehicles, this study aims toapply the method of system dynamics and combined with the grey prediction theory to determine the parameters as well as to simulate and analyze the ratio ofvehicles to chargers. Through scenario analysis, it is predicted that by 2030, thisratio will gradually decrease from 1.79 to 1. In order to achieve this ratio as 1:1, itis necessary to speed up the construction of public charging station or privatecharging station. Due to global warming, the attitudes of countries towards fuelvehicles have become increasingly tough. There is huge uncertainty in the growthrate of electric vehicles. Therefore, it is recommended that the construction ofcharging station be deployed in advance to avoid hindering the development ofelectric vehicles in the future.
基金funded by the Provincial College Students'Imnnovative Entrepreneurial Training Plan Program(S201910445052).
文摘Speeding up the promotion of new energy vehicles is an important measure to optimize the energy structure,promote energy conservation and emission reduction,and develop the economy sustainability.The research uses a questionnaire survey to analyze the residents’willingness to purchase new energy vehicles in Jinan Gty of China,and utilizes the binomial logistic regression model and Global Moran's I to explain the impact of three factors(including responden ts'personal characteristics and subjective cognition,products,and social environment)on the purchase willingness of new energy vehicles.According to the survey,75.12%of the responden ts consider buying new energy vehicles in the future,but only 11.66%of the respondents know new energy vehicles well.It can be seen that the respondents in Jinan City generally have an insufficient understanding of new energy vehicles.It may lead to a decline in residents’trust in new energy vehicles,which will in turm affect their purchase willingness.Based on the survey,we find that women who live far from the city center enjoy high incomes and have a low-carbon awareness,generally exhibit a higher willingness to purchase new energy vehicles.Spatial distribution of the purchase willingness has certain aggregation characteristics,showing a positive spatial correlation pattern.Purchase willingness has a certain positive diffusion effect in space,and areas with a higher purchase willingness have a positive driving effect on their surrounding regions.Spatial distribution of the purchase willingness can be used as one of the breakthroughs in promoting new energy vehicles.In addition,safety,price,after-sales service,and infrastruicture of new energy vehicles are important determinants of people's purchase willingness.Among the types of subsidies,financial subsidy is most effective on the residents’purchase wilingness.Our research provides an impor tant information for the promotion of new energy vehicles in the region.
基金supported by the National Key Research and Development Program of China (2019YFB1600800)。
文摘New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-sources heterogenous data for new energy vehicles and weak platform scalability,the framework of an intelligent decision support platform is proposed in this paper. The principle of software and hardware system is introduced. Hadoop is adopted as the software system architecture of the platform. Master-standby redundancy and dual-line redundancy ensure the reliability of the hardware system. In addition, the applications on the intelligent decision support platform in usage patterns recognition, energy consumption, battery state of health and battery safety analysis are also described.
基金Supported by the National Social Science Foundation of China(23BTJ021)the National Natural Science Foundation of China(71971194)。
文摘The new energy vehicle(NEV)subsidy policy introduced in China in 2013 has significantly boosted the adoption and sales of NEVs,with sales increasing more than 40-fold.However,the mechanisms by which subsidy policies influence the diffusion of NEVs in China remain unclear,posing challenges for governments to design future strategies.Thus,the primary objective of this paper is to empirically examine the impact of subsidy policy on the diffusion of new energy vehicles and to forecast future development trends using the grey Bass model,a predictive model suited for new product adoption forecasting.Our findings suggest that while the sales of NEVs in China will continue to rise,the growth rate will slow.Key milestones include the first inflection points for new energy vehicles and battery electric vehicles,anticipated in 2025 and 2024 respectively,with peak sales expected in 2028 and 2027.These insights are crucial for manufacturers,enabling them to adjust their production strategies timely and enhance their resilience in the market.
文摘In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.
文摘1.The overall development of new energy vehicles was good in 2017.In early 2017,the new energy vehicle market was greatly affected by major policy adjustments such as drastic decline in new energy vehicle subsidies and re-examination of the model catalogue.But China’s determination to vigorously promote the healthy development of the new energy vehicle industry has not changed.In March and April。
文摘This paper presents a review on the recent research and technical progress of electric motor systems and electric powertrains for new energy vehicles.Through the analysis and comparison of direct current motor,induction motor,and synchronous motor,it is found that permanent magnet synchronous motor has better overall performance;by comparison with converters with Si-based IGBTs,it is found converters with SiC MOSFETs show significantly higher efficiency and increase driving mileage per charge.In addition,the pros and cons of different control strategies and algorithms are demonstrated.Next,by comparing series,parallel,and power split hybrid powertrains,the series-parallel compound hybrid powertrains are found to provide better fuel economy.Different electric powertrains,hybrid powertrains,and range-extended electric systems are also detailed,and their advantages and disadvantages are described.Finally,the technology roadmap over the next 15 years is proposed regarding traction motor,power electronic converter and electric powertrain as well as the key materials and components at each time frame.
文摘This article takes 2016-2022 as the inspection period to construct an evaluation index system for the green development level of the new energy vehicle industry.The entropy method and comprehensive index are used to measure the green development level of the new energy vehicle industry in Chongqing,and compared with neighboring provinces such as Yunnan,Guizhou,and Sichuan.Policy recommendations are proposed to promote the development of the new energy vehicle industry in Chongqing City.
文摘New energy vehicles represent the inevitable trend of future development.Compared to traditional fuel vehicles,they are more energy-saving and environmentally friendly,effectively reducing air pollution and mitigating excessive exploitation of oil resources,a stance strongly supported by governments.However,new energy vehicles possess certain drawbacks in terms of price and usability compared to traditional counterparts.Therefore,external support is imperative for their development.This paper delineates four main sections:the background of new energy vehicle promotion and application,a comparative analysis of domestic and foreign promotion models,specific promotion suggestions,and future development prospects.By leveraging insights from economic analysis,the optimal promotion model for new energy vehicles is elucidated.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.72131007,7214006,and 72074077)Open access funding provided by International Institute for Applied Systems Analysis(IIASA).
文摘The diffusion of new energy vehicles(NEVs),such as battery electric vehicles(BEVs)and fuel cell vehicles(FCVs),is critical to the transportation sector's deep decarbonization.The cost of energy chains is an important factor in the diffusion of NEVs.Although researchers have addressed the technological learning effect of NEVs and the life cycle emissions associated with the diffusion of NEVs,little work has been conducted to analyze the life cycle costs of different energy chains associated with different NEVs in consideration of technological learning potential.Thus,relevant information on investment remains insufficient to promote the deployment of NEVs.This study proposes a systematic framework that includes various(competing or coordinated)energy chains of NEVs formed with different technologies of power generation and transmission,hydrogen production and transportation,power-to-liquid fuel,and fuel transportation.The levelized costs of three typical carbon-neutral energy chains are investigated using the life cycle cost model and considering the technological learning effect.Results show that the current well-to-pump levelized costs of the energy chains in China for BEVs,FCVs,and internal combustion engine vehicles(ICEVs)are approximately 3.60,4.31,and 2.21 yuan/GJ,respectively,and the well-to-wheel levelized costs are 4.50,6.15,and 7.51 yuan/GJ,respectively.These costs primarily include raw material costs and they vary greatly for BEVs and FCVs from resource and consumer costs.In consideration of the technological learning effect,the energy chains'well-to-wheel levelized costs are expected todecrease by 24.82%for BEVs,27.12%for FCVs,and 19.25%for ICEVs by 2060.This work also summarizes policy recommendations on developing energy chains to promote the diffusion of NEVs in China.
基金International Science&Technology Cooperation of China under 2019YFE0100200.
文摘New energy vehicles play a positive role in reducing carbon emissions.To improve the dynamic performance and durability of vehicle powertrain,the hybrid energy storage system of“fuel cell/power battery plus super capacitor”is more used in new energy vehicles.Bidirectional DC–DC converters with wide voltage conversion range are essential for voltage matching and power decoupling between super capacitor and vehicle bus,helping to improve the low input voltage characteristics of super capacitors and realize the recovery of feedback energy.In recent years,the topologies of bidirectional converters have been widely investigated and optimized.Aiming to obtain bidirectional DC–DC converters with wide voltage conversion range suitable for hybrid energy storage system,a review of the research status of non-isolated converters based on impedance networks and isolated converters based on transformer are presented.Additionally,an evaluation system for bidirectional DC–DC topologies for hybrid energy storage system is constructed,providing a reference for designing bidirectional DC–DC converters.The performance of eight typical non-isolated converters and seven typical isolated converters are comprehensively evaluated by using this evaluation system.On this basis,issues about DC–DC converters for hybrid energy storage system are discussed,and some suggestions for the future research directions of DC–DC converters are proposed.The optimization of bidirectional DC–DC converters for hybrid energy storage system from the perspectives of wide bandgap device application,electromagnetic compatibility technology and converter fault diagnosis strategies is the main research direction.
基金This research is supported by the National Natural Science Foundation of China[Grant number.71801190].
文摘The development of the new energy vehicle industry has become a key force driving the goals of carbon peak and carbon neutralization.To better guide future strategies,this study investigates the dual impact of subsidy and dual-integral policies on the performance of new energy vehicle enterprises.This study first theorizes the influential mechanism according to the institutional-based approach and technical innovation theory,and then collects data from listed companies in the new energy vehicle industry from 2016 to 2020.The hypotheses are examined using a two-way fixed-effects model.The findings show that:(1)subsidy policies are can still improve enterprise performance,but not through green technology innovation;(2)the dual-credit policy can improve enterprise performance through green technology innovation;and(3)under current policy conditions,with subsidies declining annually,the interaction effects between the subsidy and dual-integral policies will also decrease.Thus,this study suggests that non-monetary industrial policy,represented by the dual credit policy is a more effective alternative to government subsidies.
基金supported in part by the National Natural Science Foundation of China(61503132)。
文摘In order to improve the heat dissipation capability of motor controller for new energy vehicles,the water cooled radiator with multiple channels is optimized in this paper.The heat conduction between the heat source IGBT and the radiator,the convective heat transfer between the radiator and the coolant,the mechanical strength and the manufacturing cost are comprehensively considered during the optimization process.The power loss and thermal resistance of the IGBT unit are calculated at first,and finite element model of the radiator is established.On this basis,multi-physics coupling analysis of the water cooled radiator is carried out.Secondly,the sensitivity analysis is applied to verify the influence of structural parameters on the heat dissipation performance of the radiator system.The influence of coolant inlet velocity v,number of cooling ribs n,height of radiator ribs H on the maximum temperature rise T,the temperature difference ΔT between phase U and W,and the coolant pressure lossΔP are analyzed in depth,and the optimal range of the structural parameters for heat dissipation is obtained.Finally,an experimental platform was set up to verify the performance of the proposed structure of water cooled radiator for motor controller of new energy vehicle.The results show that the heat dissipation capability of the proposed radiator is improved compared with the initial design.
基金National Social Science Foundation of China Key Project“Technologydriven New Energy Vehicle Industry Business Model Innovation Research”[Grant Number.16AGL004].
文摘With the new round of scientific and technological revolution and industrial transformation,China has posited the direction of“new infrastructure”in 2020.As one of the seven major industries of the“new infrastructure”,the charging infrastructure(CI)industry not only supports the upgrade of the new energy vehicle industry but also provides developing platforms for emerging industries,such as wireless charging,energy storage,smart microgrid,and new energy consumption.Therefore,the government’s supporting role is crucial for the CI industry.To effectively explore the effectiveness of government’s subsidy policy in the CI industry and promote its healthy development,we employed a game model and discussed the government's evolution process of different game strategies between CI and battery-swapping station(BSS)operators in this study.First,China's government subsidies for the electric vehicle(EV)industry were classified into CIs and BSSs.The subsidies obtained by the CI operators were operating subsidies,whereas those obtained by BSSs were investment subsidies.Second,a game model was constructed,involving the government,operators,and users.The model used backward induction to seek the refined Nash equilibrium solution for CIs and BSS operators.The Nash equilibrium solution indicated that the optimal investment amount and BSS quantity of the operator were positively correlated with the government subsidy intensity.When the profitability of the operators increased and the amount of the subsidies increased,consumers’willingness to use EVs increased and the policy effects were closely related to the benefits of government management.The decisions made by either the users or the operators were inversely related to the operators’management efficiency.Besides,the subsidy policy was affected by the government management.Therefore,in the implementation stage of the government’s future subsidy policies,the government needs to innovate and improve management effectiveness.The government could use subsidy policies as a driving force for developing the CI industry to build a comprehensive ecosystem of the industry,which is also the next key point for the government to promote the development of the CI industry in the future.
文摘New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.
文摘In the context of global carbon neutrality,new energy vehicle promotion(NEVP)has become an important means of reducing carbon emissions.This paper constructs a theoretical model and uses panel data on NEVP in 21 countries from 2012 to 2018 to empirically examine the green effect of NEVP.The results indicate the following:(1)NEVP significantly reduces greenhouse gases emissions,and the green effect can be transmitted and diffused through a direct path.(2)Replacing fuel-fired vehicles and accelerating the end-of-life vehicle scrapping process significantly conducted the green effect,and aggravating traffic congestion was not statistically significant.(3)The transmission mechanism of the green effect is regulated by regional economic heterogeneity.In regions with better development of fuel-fired vehicles,the transmission of the green effect is subject to the elimination of fuel-fired vehicles and traffic congestion governance,and the transmission efficiency is low.However,regions with a relatively weak fuel-fired automobile industry foundation show a strong“advantage of backwardness”,and the green effect is more prominent.This means that global NEVP should be further accelerated to achieve the green effect and the goal of global carbon neutrality.
基金supported by the National Natural Science Foundation of China(Grant No.72161003)。
文摘Based on the Baa S model,a new energy vehicle supply chain game model composed of battery-swapping operators and vehicle manufacturers was constructed,and the corresponding optimal decisions of the supply chain members were obtained.The influence of related parameters on the equilibrium results was analyzed,and the Matlab was used for example analysis.The results show that:(1)The increase in the average consumer commuter mileage over the life of the vehicle can promote the increase in the demand for new energy vehicles and the profits of the supply chain members,which has a driving effect on the development of the battery swap industry.(2)Consumer sensitivity coefficient to the price of battery swap has a negative impact on battery-swapping price,new energy vehicle price,market demand for new energy vehicles,and profits of vehicle manufacturers and battery-swapping operators.
文摘New energy vehicle (NEV) refers to a vehicle which is fully or partially powered by electricity instead of petrol. Since petrol price grows constantly and people become more environmentally conscious, people have shown their numerous interests on the NEV. A lot of previous studies have paid more attention on vehicle itself, such as the high technology of the in-car assistance systems, and the pros and cons of electricity as a new energy for vehicle. However, the quality of vehicle should not only be limited to these aspects. Therefore, in this study, author focus more on the relationship between the vehicle and users and gives a brief introduction of some user interface problems through investigating one of the top selling types of NEV, Han EV belonging to BYD company, in terms of Standardize symbol, Gestalt grouping principles, Design of Visual display, Working memory and attention. In addition, corresponding improvement advice will also be provided in the later part of this work.
基金Supported by National Natural Science Foundation of China (Grant Nos.52222215,52072051)Fundamental Research Funds for the Central Universities in China (Grant No.2023CDJXY-025)Chongqing Municipal Natural Science Foundation of China (Grant No.CSTB2023NSCQ-JQX0003)。
文摘The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.