Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
Extensive high-speed railway(HSR)network resembled the intricate vascular system of the human body,crisscrossing mainlands.Seismic events,known for their unpredictability,pose a significant threat to both trains and b...Extensive high-speed railway(HSR)network resembled the intricate vascular system of the human body,crisscrossing mainlands.Seismic events,known for their unpredictability,pose a significant threat to both trains and bridges,given the HSR’s extended operational duration.Therefore,ensuring the running safety of train-bridge coupled(TBC)system,primarily composed of simply supported beam bridges,is paramount.Traditional methods like the Monte Carlo method fall short in analyzing this intricate system efficiently.Instead,efficient algorithm like the new point estimate method combined with moment expansion approximation(NPEM-MEA)is applied to study random responses of numerical simulation TBC systems.Validation of the NPEM-MEA’s feasibility is conducted using the Monte Carlo method.Comparative analysis confirms the accuracy and efficiency of the method,with a recommended truncation order of four to six for the NPEM-MEA.Additionally,the influences of seismic magnitude and epicentral distance are discussed based on the random dynamic responses in the TBC system.This methodology not only facilitates seismic safety assessments for TBC systems but also contributes to standard-setting for these systems under earthquake conditions.展开更多
The new generalized (G'/G)-expansion method is one of the powerful and competent methods that appear in recent time for establishing exact solutions to nonlinear evolution equations (NLEEs). We apply the new gener...The new generalized (G'/G)-expansion method is one of the powerful and competent methods that appear in recent time for establishing exact solutions to nonlinear evolution equations (NLEEs). We apply the new generalized (G'/G)-expansion method to solve exact solutions of the new coupled Konno-Oono equation and construct exact solutions expressed in terms of hyperbolic functions, trigonometric functions, and rational functions with arbitrary parameters. The significance of obtained solutions gives credence to the explanation and understanding of related physical phenomena. As a newly developed mathematical tool, this method efficiency for finding exact solutions has been demonstrated through showing its straightforward nature and establishing its ability to handle nonlinearities prototyped by the NLEEs whether in applied mathematics, physics, or engineering contexts.展开更多
More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance m...More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance method.展开更多
The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field...The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.展开更多
In this paper, a new method is outlined for the estimation of coupling efficiency between a source laser and a WGPD. Internal quantum efficiencies as high as 72% (for 0.15μm device) and 86.5% (for 0.5μm device) are ...In this paper, a new method is outlined for the estimation of coupling efficiency between a source laser and a WGPD. Internal quantum efficiencies as high as 72% (for 0.15μm device) and 86.5% (for 0.5μm device) are achieved.展开更多
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.
基金National Natural Science Foundation of China under Grant Nos.11972379 and 42377184,Hunan 100-Talent PlanNatural Science Foundation of Hunan Province under Grant No.2022JJ10079+1 种基金Hunan High-Level Talent Plan under Grant No.420030004Central South University Research Project under Grant Nos.202045006(Innovation-Driven Project)and 502390001。
文摘Extensive high-speed railway(HSR)network resembled the intricate vascular system of the human body,crisscrossing mainlands.Seismic events,known for their unpredictability,pose a significant threat to both trains and bridges,given the HSR’s extended operational duration.Therefore,ensuring the running safety of train-bridge coupled(TBC)system,primarily composed of simply supported beam bridges,is paramount.Traditional methods like the Monte Carlo method fall short in analyzing this intricate system efficiently.Instead,efficient algorithm like the new point estimate method combined with moment expansion approximation(NPEM-MEA)is applied to study random responses of numerical simulation TBC systems.Validation of the NPEM-MEA’s feasibility is conducted using the Monte Carlo method.Comparative analysis confirms the accuracy and efficiency of the method,with a recommended truncation order of four to six for the NPEM-MEA.Additionally,the influences of seismic magnitude and epicentral distance are discussed based on the random dynamic responses in the TBC system.This methodology not only facilitates seismic safety assessments for TBC systems but also contributes to standard-setting for these systems under earthquake conditions.
文摘The new generalized (G'/G)-expansion method is one of the powerful and competent methods that appear in recent time for establishing exact solutions to nonlinear evolution equations (NLEEs). We apply the new generalized (G'/G)-expansion method to solve exact solutions of the new coupled Konno-Oono equation and construct exact solutions expressed in terms of hyperbolic functions, trigonometric functions, and rational functions with arbitrary parameters. The significance of obtained solutions gives credence to the explanation and understanding of related physical phenomena. As a newly developed mathematical tool, this method efficiency for finding exact solutions has been demonstrated through showing its straightforward nature and establishing its ability to handle nonlinearities prototyped by the NLEEs whether in applied mathematics, physics, or engineering contexts.
文摘More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance method.
文摘The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.
文摘In this paper, a new method is outlined for the estimation of coupling efficiency between a source laser and a WGPD. Internal quantum efficiencies as high as 72% (for 0.15μm device) and 86.5% (for 0.5μm device) are achieved.