This study aimed to provide a theoretical basis for adopting suitable cultivation measures to tackle calcium (Ca) deficiency in citrus leaves. The Newhall navel orange (Citrus sinensis Osbeck) canopy was sprayed w...This study aimed to provide a theoretical basis for adopting suitable cultivation measures to tackle calcium (Ca) deficiency in citrus leaves. The Newhall navel orange (Citrus sinensis Osbeck) canopy was sprayed with 20.0 mmol L-1 of Ca(NO3)2 during physiological fruit drop period, fruit expanding period, and fruit maturing period on 30, 90, and 210 days after full bloom (DAFB), respectively, and its effects on leaf gas exchange parameters and leaf mineral nutrition and fruit quality were analyzed. The results showed that: (1) The photosynthetic rate (ACO2) at 9:00 a.m. and 16:00 p.m. of fruit expanding period with 30 and 90 DAFB Ca(NO3)2treatments slightly or significantly improved mainly by decreasing stomatal limitation and nonstomatal limitation, respectively. (2) Compared with control (CK), the Ca concentration in leaves with 30, 90, and 240 DAFB Ca(NO3)2 treatments increased by 127.16; 97.53, and 33.33%, respectively, and the leaf magnesium concentra- tion also increased by more than 32.26%. However, Ca(NO3)2 canopy spraying on 30 DAFB significantly reduced the leaf potassium concentration, by 22.14% compared with CK. (3) Ca(NO3)2 canopy spraying on 30 DAFB decreased the second fruit drop rate by 30.55% and increased the weight per fruit by 25.04%, thus resulting in a significant increase in citrus yield. (4) Spraying Ca(NO3) on 30 DAFB mainly affected the metabolism of titratable acid (TA) to improve the maturity of citrus fruits. Whilst it improved the external quality and the coloring of citrus fruit significantly. Therefore, Ca(NO3)2 canopy spraying during physiological fruit drop period has a better influence on the tree character and fruit quality of Newhall navel orange (Citrus sinensis Osbeck).展开更多
基金supported by a grant from the National Natural Science Foundation of China(NSFC,31470408)the Science and Technology Support Project of Chongqing,China(cstc2014fazktjcsf 80031)+1 种基金the Fundamental Research Funds for the Central Universities,China(XDJK2016 A012XDJK2013 A002)
文摘This study aimed to provide a theoretical basis for adopting suitable cultivation measures to tackle calcium (Ca) deficiency in citrus leaves. The Newhall navel orange (Citrus sinensis Osbeck) canopy was sprayed with 20.0 mmol L-1 of Ca(NO3)2 during physiological fruit drop period, fruit expanding period, and fruit maturing period on 30, 90, and 210 days after full bloom (DAFB), respectively, and its effects on leaf gas exchange parameters and leaf mineral nutrition and fruit quality were analyzed. The results showed that: (1) The photosynthetic rate (ACO2) at 9:00 a.m. and 16:00 p.m. of fruit expanding period with 30 and 90 DAFB Ca(NO3)2treatments slightly or significantly improved mainly by decreasing stomatal limitation and nonstomatal limitation, respectively. (2) Compared with control (CK), the Ca concentration in leaves with 30, 90, and 240 DAFB Ca(NO3)2 treatments increased by 127.16; 97.53, and 33.33%, respectively, and the leaf magnesium concentra- tion also increased by more than 32.26%. However, Ca(NO3)2 canopy spraying on 30 DAFB significantly reduced the leaf potassium concentration, by 22.14% compared with CK. (3) Ca(NO3)2 canopy spraying on 30 DAFB decreased the second fruit drop rate by 30.55% and increased the weight per fruit by 25.04%, thus resulting in a significant increase in citrus yield. (4) Spraying Ca(NO3) on 30 DAFB mainly affected the metabolism of titratable acid (TA) to improve the maturity of citrus fruits. Whilst it improved the external quality and the coloring of citrus fruit significantly. Therefore, Ca(NO3)2 canopy spraying during physiological fruit drop period has a better influence on the tree character and fruit quality of Newhall navel orange (Citrus sinensis Osbeck).