期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microstructure, Hardness and Corrosion Resistance of ZrN Films Prepared by Inductively Coupled Plasma Enhanced RF Magnetron Sputtering 被引量:4
1
作者 文峰 孟月东 +1 位作者 任兆杏 舒兴胜 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第2期170-175,共6页
ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance ... ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111). 展开更多
关键词 inductively coupled plasma (ICP) magnetron sputtering zirconium nitride nficrostructure nano-hardness corrosion resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部