There are a great variety of commercial nickel alloys mainly because nickel is able to dissolve a large amount of alloying elements while maintaining a single ductile austenitic phase. Nickel alloys are generally desi...There are a great variety of commercial nickel alloys mainly because nickel is able to dissolve a large amount of alloying elements while maintaining a single ductile austenitic phase. Nickel alloys are generally designed for and used in highly aggressive environments, for example, those where stainless steels may experience pitting corrosion or environmentally assisted cracking. While nickel alloys are generally resistant to pitting corrosion in chloride-containing environments, they may be prone to crevice corrosion attack. Addition of chromium, molybdenum and tungsten increases the localized corrosion resistance of nickel alloys. This review on the resistance to localized corrosion of nickel alloys includes specific environments such as those present in oil and gas upstream operations, in the chemical process industry and in seawater service.展开更多
A new procedure was proposed for evaluating the weldability of nickel-base superalloys. The theory is on the basis of two microstructural patterns. In pattern I, the weld microstructure exhibits severe alloying segreg...A new procedure was proposed for evaluating the weldability of nickel-base superalloys. The theory is on the basis of two microstructural patterns. In pattern I, the weld microstructure exhibits severe alloying segregation, many low-melting eutectic structures, and low weldability. The weld requires a weaker etchant and a shorter time for etching. In pattern Ⅱ, the weld microstructure displays less alloying segregation, low quantity of eutectic structures, and high weldability. The weld needs a stronger etchant and a longer time for etching. Five superalloys containing different amounts of Nb and Ti were designed to verify the patterns. After welding operations, the welds were etched by four etchants with different corrosivities. The weldability was determined by TG-DSC measurements. The metallography and weldability results confirmed the theoretic patterns. Finally, the etchant corrosivity and etching time were proposed as new criteria to evaluate the weldability of nickel-base superalloys.展开更多
Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and num...Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and numerical modeling are performed in this paper to investigate the behavior of an actively cooled thermal protection system. The analytic estimation is based on the electric analogy method and finite element analysis(FEA) is applied to the numerical simulation. Temperature and stress distributions are obtained for the actively cooled channel walls with three kinds of nickel alloys with or with no thermal barrier coating(TBC). The temperature of the channel wall with coating has no obvious difference from the one with no coating, but the stress with coating on the channel wall is much smaller than that with no coating. Inconel X-750 has the best characteristics among the three Ni-based materials due to its higher thermal conductivity, lower elasticity module and greater allowable stress. Analytic estimation and numerical modeling results are compared with each other and a reasonable agreement is obtained.展开更多
Laser powder bed fusion(LPBF)is the most widely used metal additive manufacturing process.It is a novel layer-by-layer manufacturing technique based on a geometrical model that provides a suitable alternative for mate...Laser powder bed fusion(LPBF)is the most widely used metal additive manufacturing process.It is a novel layer-by-layer manufacturing technique based on a geometrical model that provides a suitable alternative for material processing.This mode is widely used in laser and electron beam welding.Nickel(Ni)alloy prepa-ration using the LPBF method has attracted considerable attention in several areas,owing to the high corro-sion resistance and good mechanical properties of the prepared alloys.The specific conditions of solidification through the metal fused during the selective laser fusion process and its layer deposition induces microstruc-tural peculiarities,including the formation of a supersaturated solid solution,extreme microstructural refine-ment,and the generation of residual stress.Consequently,heat treatment and hot isostatic pressing,which are generally applied to conventionally manufactured Ni alloys,may need to be altered to adapt to the met-allurgical properties of Ni alloys manufactured using direct metal laser deposition and address particular is-sues resulting from the process itself.Several studies have been conducted on this topic over the past few years,suggesting different approaches for addressing different alloying systems.This review summarizes the latest scientific findings in the area of thermal treatment for selective laser sintering of additively manufactured Ni alloys.展开更多
A new directionally solidified Ni-based superalloy DZ24, which is a modification of K24 alloy without rare and expensive elemental additions, such as Ta and Hf, was studied in this paper. The microstructure and stress...A new directionally solidified Ni-based superalloy DZ24, which is a modification of K24 alloy without rare and expensive elemental additions, such as Ta and Hf, was studied in this paper. The microstructure and stress rupture properties of conventionally cast and directionally solidified superalloys were comparatively analyzed. It is indicated that the microstructure of K24 alloy is composed of γ, γ', γ/γ' eutectics and MC carbides. Compared with the microstructure of K24 polycrystalline alloy, γ/γ' eutectic completely dissolves into the γ matrix, the fine and regular γ' phase reprecipitates, and MC carbides decompose to M6C/M23C6 carbides after heat treatment in DZ24 alloy. The rupture life of DZ24 alloy is two times longer than that of K24 alloy. The more homogeneous the size of γ' precipitate, the longer the rupture life. The coarsening and rafting behaviors of γ' precipitates are observed in DZ24 alloy after the stress-rupture test.展开更多
Grain structure, dendrite morphologies and shape of MC type carbides ina nickel-base superalloy IN 738 LC are investigated with the addition of carbides,boride, nitride and intermetallic compounds. The results show th...Grain structure, dendrite morphologies and shape of MC type carbides ina nickel-base superalloy IN 738 LC are investigated with the addition of carbides,boride, nitride and intermetallic compounds. The results show that the grain size of theingots can be refined extensively to the order of ASTM M11~12 by combination of anintermetallic compound NixAly, addition together with lowering melt homogeneoustreatment temperature during the melting and casting process. In addition, the processcould restrain the formation of script-type carbides. The new process does not changethe phase constitution, freezing characteristics and sub-structure stability. Therefore, itis considered as an effective and practical method of grain refinement for superalloys.展开更多
Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications....Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications. Aluminum additions result in a positive hardness increment of the ternary alloys in comparison with the binary Cu-Ni alloys. Generalized wear mechanisms of the alloys with low aluminum content are basically type abrasive, while samples with 5 and 10 at.% Al present an oxidative-adhesive wear mechanism. Wear results have indicated that aluminum addition affects positively the wear resistance, mainly in samples with high aluminum content product of the creation during the test of different oxides corresponding to the elements present in the alloys.展开更多
The performances of mixed ceramic and sialon ceramic tools in machining nickel based alloy are tested.The negative cutting edge inclination and small tool lead angle are recommended for reducing ceramic tool failure....The performances of mixed ceramic and sialon ceramic tools in machining nickel based alloy are tested.The negative cutting edge inclination and small tool lead angle are recommended for reducing ceramic tool failure. So called“notching at depth of cut”is not actually at the depth of cutting line, but out of cutting area。 The real reason of notching is caused by shocking of “sawtooth”on sawtooth- shaped burr and fin- shaped edges of chip展开更多
A Y2O3 dispersion strengthened nickel-based superalloy sheet(0.15 mm thick) was prepared by electron beam physical vapor deposition(EB-PVD) technology.Different heat treatments were used to improve the mechanical ...A Y2O3 dispersion strengthened nickel-based superalloy sheet(0.15 mm thick) was prepared by electron beam physical vapor deposition(EB-PVD) technology.Different heat treatments were used to improve the mechanical properties of the alloy sheet.Differential thermal analysis(DTA) was used to examine the thermal stability of the as-deposited sheet.Element contents,phase composition and microstructure investigations on as-deposited and heat treated specimens were performed by X-ray fluorescence spectrometer(XRF),X-ray diffraction(XRD) and scanning electron microscopy(SEM).Tensile tests were conducted at room temperature on specimens as-deposited and heat treated.The results show that the as-deposited sheet is composed of equiaxed grains on the substrate side and columnar grains on the evaporation side.The as-deposited sheet shows poor ductility due to micropores between columnar grains.The strength and ductility can be improved effectively by annealing at 800°C for 3 h.For samples treated at 1100°C,the strength drops down due to the precipitates of Y3Al5O12(YAG).展开更多
The influence of oxygen content and heat treatment on the evolution of carbides in a powder metallurgy (PM) Ni-base superalloy was characterized. The results reveal that oxygen content has little influence on the pr...The influence of oxygen content and heat treatment on the evolution of carbides in a powder metallurgy (PM) Ni-base superalloy was characterized. The results reveal that oxygen content has little influence on the precipitation of carbides inside the particles. However, under the consolidated state, stable Ti oxides on the particle surface act as nuclei for the precipitation of prior particle boundaries (PPB). Also, oxygen can diffuse internally along grain boundaries under compressive stress, which favors the precipitation of carbides inside the particles. Therefore, a higher amount of carbides will appear with more oxygen content in the case of consolidated alloys. It is also observed that PPB can be disrupted into discontinuous particles at 1200℃, but this carbide network is hard to be eliminated completely. The combined MC-M23C6 morphology approves the nucleation and growth mechanism of carbide evolution.展开更多
The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatP ro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 al...The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatP ro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ→ L + γ + M_7C_3 →γ + M_7C_3 →γ + M_7C_3 + M_(23)C_6→γ + M_(23)C_6 and L → L + δ→ L + δ + γ→ L + δ + γ + M_(23)C_6→δ + γ + M_(23)C_6, respectively. The solidification mode was determined to be the austenitic mode(A mode) in HK40 alloy and the ferritic–austenitic solidification mode(FA mode) in HH40 alloy. In HK40 alloy, eutectic carbides directly precipitate in a liquid and coarsen during cooling. The primary γ dendrites grow at the 60° angle to each other. On the other hand, in HH40 alloy, residual δ forms because of the incomplete transformation from δ to γ. Cr_(23)C_6 carbide is produced in solid delta ferrite δ but not directly in liquid HH40 alloy. Because of carbide formation in the solid phase and no rapid growth of the dendrite in a non-preferential direction, HH40 alloy is more resistant to cast defect formation than HK40 alloy.展开更多
Electropulsing treatment(EPT) was performed on a nickel base corrosion resistant alloy during aging.The effect of EPT on the microstructure and corrosion resistance of the alloy and the mechanisms were investigated....Electropulsing treatment(EPT) was performed on a nickel base corrosion resistant alloy during aging.The effect of EPT on the microstructure and corrosion resistance of the alloy and the mechanisms were investigated.The results show that the intergranular corrosion resistance can be improved substantially without the degradation of mechanical properties of the alloy by EPT.The EPT has an effect of enhancing the interface diffusion rate of the alloying element,which is higher than the body diffusion rate.And thus discontinuous precipitation of M23C6 type carbides appears at the grain boundary in the alloy by EPT,which decreases the depletion extent of the alloying elements at the grain boundary substantially.As a result,the intergranular corrosion resistance of the alloy can be improved by the EPT without any degradation of mechanical properties.展开更多
When a moderately stable phase is precipitated out during an intemal reaction, the behaviour of the penetrating atoms within the diffusion zone can be interpreted based on thermodynamic considerations. Evidence for “...When a moderately stable phase is precipitated out during an intemal reaction, the behaviour of the penetrating atoms within the diffusion zone can be interpreted based on thermodynamic considerations. Evidence for “up-hill” diffusion of the penetrating species through the matrix towards the precipitation front during the intemal nitridation of Ni-Cr alloys at 1125℃ and 6000 bar of N2-pressure was predicted. Such behaviour of nitrogen is opposite to the boundary conditions in Wagner's description of internal reactions. A volume change associated with the precipitation reaction resulted in a stress gradient between the alloys surface and the intemal nitridation front. Stress relief occurred mainly by transport of nickel to the gas/metal interface. Pipe diffusion-controlled creep is the dominant stress accommodation mechanism during nitriding of dilute Ni-Cr alloys at 700℃ under a flowing NH3 + H2 gas mixture.展开更多
The effect of operating conditions on the aluminium content of Ni-Al alloy deposit and the catalytic function of NaF on electrodeposition in the nonaqueous solution containing aluminium are investigated.The results in...The effect of operating conditions on the aluminium content of Ni-Al alloy deposit and the catalytic function of NaF on electrodeposition in the nonaqueous solution containing aluminium are investigated.The results indicate that the plated aluminuim content will be increased with the rise of current density in a given range.When the current density is 2.5A/dm 2,nickle aluminium alloy containing 13.1 wt% aluminium will be deposited.The plated aluminium content will be increased by 2wt% as 0.1mol/L NaF is added to the bath.展开更多
Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.R...Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.展开更多
The effect of different concentrations of benzaldehyde on the electrodeposition of Ni–W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline ba...The effect of different concentrations of benzaldehyde on the electrodeposition of Ni–W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline bath(p H 8.0) contained stoichiometric amounts of nickel sulfate, sodium tungstate, and trisodium citrate as precursors. The corrosion resistance of the Ni–W-alloy-coated specimens in 0.2 mol/L H2SO4 was studied using various electrochemical techniques. Tafel polarization studies reveal that the alloy coatings obtained from the bath containing 50 ppm benzaldehyde exhibit a protection efficiency of 95.33%. The corrosion rate also decreases by 21.5 times compared with that of the blank. A higher charge-transfer resistance of 1159.40 ?·cm2 and a lower double-layer capacitance of 29.4 μF·cm-2 further confirm the better corrosion resistance of the alloy coating. X-ray diffraction studies reveal that the deposits on the mild steel surface are consisted of nanocrystals. A lower surface roughness value(Rmax) of the deposits is confirmed by atomic force microscopy.展开更多
The air oxidation of Cu Ni alloys with 50% and 70% nickel (mole fraction) at 800?℃ was studied. The kinetic curves for the oxidation of the two alloys are complex and deviate from the parabolic rate law. Typical doub...The air oxidation of Cu Ni alloys with 50% and 70% nickel (mole fraction) at 800?℃ was studied. The kinetic curves for the oxidation of the two alloys are complex and deviate from the parabolic rate law. Typical double layered scales are produced, which consist of a CuO outer layer and an inner layer containing a mixture of Cu 2O and NiO with many pores. Cu 50Ni presents a small degree of internal oxidation of nickel, which is observed in many binary double phase systems, but is quite rare in single phase systems.展开更多
The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositi...The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.展开更多
Alloy materials have attracted increasing attentions because they possess superior electrical conductivity which can contribute to excellent electrochemical performance. Herein a dendritic Ni;C alloy material has been...Alloy materials have attracted increasing attentions because they possess superior electrical conductivity which can contribute to excellent electrochemical performance. Herein a dendritic Ni;C alloy material has been prepared by the pyrolysis of nickel acetylacetonate employing oleylamine as a reductant and 1-octadecene or octadecane as the solvent. The current–voltage curves indicating that the electrical conductivity of Ni;C is higher than that of nickel oxide. Electrochemical testing indicates that a high specific capacity of 390 C/g is found in alkaline electrolyte at 0.5 A/g, and deliver excellent rate characteristic as well as cycle life. The excellent electrochemical performance may be attributed to its high electrical conductivity and dendritic nanostructure that can promote diffusion of electrolyte ions. In addition, the AC//Ni;C asymmetric supercapacitor has been assembled at a cell voltages between 0 and 1.6 V, achieving a maximum energy density of 37 Wh/kg(at a power density of 0.3995 k W/kg), and this manifests that the Ni;C alloy is a promising electrode material for electrochemical energy storage.展开更多
文摘There are a great variety of commercial nickel alloys mainly because nickel is able to dissolve a large amount of alloying elements while maintaining a single ductile austenitic phase. Nickel alloys are generally designed for and used in highly aggressive environments, for example, those where stainless steels may experience pitting corrosion or environmentally assisted cracking. While nickel alloys are generally resistant to pitting corrosion in chloride-containing environments, they may be prone to crevice corrosion attack. Addition of chromium, molybdenum and tungsten increases the localized corrosion resistance of nickel alloys. This review on the resistance to localized corrosion of nickel alloys includes specific environments such as those present in oil and gas upstream operations, in the chemical process industry and in seawater service.
基金financial support of MAPNA Group under contract No.RD-THD-89-02
文摘A new procedure was proposed for evaluating the weldability of nickel-base superalloys. The theory is on the basis of two microstructural patterns. In pattern I, the weld microstructure exhibits severe alloying segregation, many low-melting eutectic structures, and low weldability. The weld requires a weaker etchant and a shorter time for etching. In pattern Ⅱ, the weld microstructure displays less alloying segregation, low quantity of eutectic structures, and high weldability. The weld needs a stronger etchant and a longer time for etching. Five superalloys containing different amounts of Nb and Ti were designed to verify the patterns. After welding operations, the welds were etched by four etchants with different corrosivities. The weldability was determined by TG-DSC measurements. The metallography and weldability results confirmed the theoretic patterns. Finally, the etchant corrosivity and etching time were proposed as new criteria to evaluate the weldability of nickel-base superalloys.
基金co-supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51121004)the Fundamental Research Funds for the Central Universities of China (No. HIT.BRETIV.201315)
文摘Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and numerical modeling are performed in this paper to investigate the behavior of an actively cooled thermal protection system. The analytic estimation is based on the electric analogy method and finite element analysis(FEA) is applied to the numerical simulation. Temperature and stress distributions are obtained for the actively cooled channel walls with three kinds of nickel alloys with or with no thermal barrier coating(TBC). The temperature of the channel wall with coating has no obvious difference from the one with no coating, but the stress with coating on the channel wall is much smaller than that with no coating. Inconel X-750 has the best characteristics among the three Ni-based materials due to its higher thermal conductivity, lower elasticity module and greater allowable stress. Analytic estimation and numerical modeling results are compared with each other and a reasonable agreement is obtained.
文摘Laser powder bed fusion(LPBF)is the most widely used metal additive manufacturing process.It is a novel layer-by-layer manufacturing technique based on a geometrical model that provides a suitable alternative for material processing.This mode is widely used in laser and electron beam welding.Nickel(Ni)alloy prepa-ration using the LPBF method has attracted considerable attention in several areas,owing to the high corro-sion resistance and good mechanical properties of the prepared alloys.The specific conditions of solidification through the metal fused during the selective laser fusion process and its layer deposition induces microstruc-tural peculiarities,including the formation of a supersaturated solid solution,extreme microstructural refine-ment,and the generation of residual stress.Consequently,heat treatment and hot isostatic pressing,which are generally applied to conventionally manufactured Ni alloys,may need to be altered to adapt to the met-allurgical properties of Ni alloys manufactured using direct metal laser deposition and address particular is-sues resulting from the process itself.Several studies have been conducted on this topic over the past few years,suggesting different approaches for addressing different alloying systems.This review summarizes the latest scientific findings in the area of thermal treatment for selective laser sintering of additively manufactured Ni alloys.
文摘A new directionally solidified Ni-based superalloy DZ24, which is a modification of K24 alloy without rare and expensive elemental additions, such as Ta and Hf, was studied in this paper. The microstructure and stress rupture properties of conventionally cast and directionally solidified superalloys were comparatively analyzed. It is indicated that the microstructure of K24 alloy is composed of γ, γ', γ/γ' eutectics and MC carbides. Compared with the microstructure of K24 polycrystalline alloy, γ/γ' eutectic completely dissolves into the γ matrix, the fine and regular γ' phase reprecipitates, and MC carbides decompose to M6C/M23C6 carbides after heat treatment in DZ24 alloy. The rupture life of DZ24 alloy is two times longer than that of K24 alloy. The more homogeneous the size of γ' precipitate, the longer the rupture life. The coarsening and rafting behaviors of γ' precipitates are observed in DZ24 alloy after the stress-rupture test.
文摘Grain structure, dendrite morphologies and shape of MC type carbides ina nickel-base superalloy IN 738 LC are investigated with the addition of carbides,boride, nitride and intermetallic compounds. The results show that the grain size of theingots can be refined extensively to the order of ASTM M11~12 by combination of anintermetallic compound NixAly, addition together with lowering melt homogeneoustreatment temperature during the melting and casting process. In addition, the processcould restrain the formation of script-type carbides. The new process does not changethe phase constitution, freezing characteristics and sub-structure stability. Therefore, itis considered as an effective and practical method of grain refinement for superalloys.
文摘Cu-Ni-Al alloys at different concentrations were obtained using a high frequency induction melting unit, keeping a balance in the nominal compositions. Light alloys are important to be used in industrial applications. Aluminum additions result in a positive hardness increment of the ternary alloys in comparison with the binary Cu-Ni alloys. Generalized wear mechanisms of the alloys with low aluminum content are basically type abrasive, while samples with 5 and 10 at.% Al present an oxidative-adhesive wear mechanism. Wear results have indicated that aluminum addition affects positively the wear resistance, mainly in samples with high aluminum content product of the creation during the test of different oxides corresponding to the elements present in the alloys.
文摘The performances of mixed ceramic and sialon ceramic tools in machining nickel based alloy are tested.The negative cutting edge inclination and small tool lead angle are recommended for reducing ceramic tool failure. So called“notching at depth of cut”is not actually at the depth of cutting line, but out of cutting area。 The real reason of notching is caused by shocking of “sawtooth”on sawtooth- shaped burr and fin- shaped edges of chip
文摘A Y2O3 dispersion strengthened nickel-based superalloy sheet(0.15 mm thick) was prepared by electron beam physical vapor deposition(EB-PVD) technology.Different heat treatments were used to improve the mechanical properties of the alloy sheet.Differential thermal analysis(DTA) was used to examine the thermal stability of the as-deposited sheet.Element contents,phase composition and microstructure investigations on as-deposited and heat treated specimens were performed by X-ray fluorescence spectrometer(XRF),X-ray diffraction(XRD) and scanning electron microscopy(SEM).Tensile tests were conducted at room temperature on specimens as-deposited and heat treated.The results show that the as-deposited sheet is composed of equiaxed grains on the substrate side and columnar grains on the evaporation side.The as-deposited sheet shows poor ductility due to micropores between columnar grains.The strength and ductility can be improved effectively by annealing at 800°C for 3 h.For samples treated at 1100°C,the strength drops down due to the precipitates of Y3Al5O12(YAG).
基金supported by the Science and Technology Planning Foundation of Beijing (No.D09080300510901)the National Natural Science Foundation of China (No.51104007)
文摘The influence of oxygen content and heat treatment on the evolution of carbides in a powder metallurgy (PM) Ni-base superalloy was characterized. The results reveal that oxygen content has little influence on the precipitation of carbides inside the particles. However, under the consolidated state, stable Ti oxides on the particle surface act as nuclei for the precipitation of prior particle boundaries (PPB). Also, oxygen can diffuse internally along grain boundaries under compressive stress, which favors the precipitation of carbides inside the particles. Therefore, a higher amount of carbides will appear with more oxygen content in the case of consolidated alloys. It is also observed that PPB can be disrupted into discontinuous particles at 1200℃, but this carbide network is hard to be eliminated completely. The combined MC-M23C6 morphology approves the nucleation and growth mechanism of carbide evolution.
基金he financial support provided by the National High-Tech Research and Development Program of China (No. 2012AA03A511)
文摘The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatP ro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ→ L + γ + M_7C_3 →γ + M_7C_3 →γ + M_7C_3 + M_(23)C_6→γ + M_(23)C_6 and L → L + δ→ L + δ + γ→ L + δ + γ + M_(23)C_6→δ + γ + M_(23)C_6, respectively. The solidification mode was determined to be the austenitic mode(A mode) in HK40 alloy and the ferritic–austenitic solidification mode(FA mode) in HH40 alloy. In HK40 alloy, eutectic carbides directly precipitate in a liquid and coarsen during cooling. The primary γ dendrites grow at the 60° angle to each other. On the other hand, in HH40 alloy, residual δ forms because of the incomplete transformation from δ to γ. Cr_(23)C_6 carbide is produced in solid delta ferrite δ but not directly in liquid HH40 alloy. Because of carbide formation in the solid phase and no rapid growth of the dendrite in a non-preferential direction, HH40 alloy is more resistant to cast defect formation than HK40 alloy.
基金Project(2010CB631203)supported by National Basic Research Program of ChinaProject(51001021)supported by the National Natural Science Foundation of ChinaProjects(20100042120008,20100042110006)supported by the PhD Programs Foundation of Ministry of Education of China
文摘Electropulsing treatment(EPT) was performed on a nickel base corrosion resistant alloy during aging.The effect of EPT on the microstructure and corrosion resistance of the alloy and the mechanisms were investigated.The results show that the intergranular corrosion resistance can be improved substantially without the degradation of mechanical properties of the alloy by EPT.The EPT has an effect of enhancing the interface diffusion rate of the alloying element,which is higher than the body diffusion rate.And thus discontinuous precipitation of M23C6 type carbides appears at the grain boundary in the alloy by EPT,which decreases the depletion extent of the alloying elements at the grain boundary substantially.As a result,the intergranular corrosion resistance of the alloy can be improved by the EPT without any degradation of mechanical properties.
文摘When a moderately stable phase is precipitated out during an intemal reaction, the behaviour of the penetrating atoms within the diffusion zone can be interpreted based on thermodynamic considerations. Evidence for “up-hill” diffusion of the penetrating species through the matrix towards the precipitation front during the intemal nitridation of Ni-Cr alloys at 1125℃ and 6000 bar of N2-pressure was predicted. Such behaviour of nitrogen is opposite to the boundary conditions in Wagner's description of internal reactions. A volume change associated with the precipitation reaction resulted in a stress gradient between the alloys surface and the intemal nitridation front. Stress relief occurred mainly by transport of nickel to the gas/metal interface. Pipe diffusion-controlled creep is the dominant stress accommodation mechanism during nitriding of dilute Ni-Cr alloys at 700℃ under a flowing NH3 + H2 gas mixture.
文摘The effect of operating conditions on the aluminium content of Ni-Al alloy deposit and the catalytic function of NaF on electrodeposition in the nonaqueous solution containing aluminium are investigated.The results indicate that the plated aluminuim content will be increased with the rise of current density in a given range.When the current density is 2.5A/dm 2,nickle aluminium alloy containing 13.1 wt% aluminium will be deposited.The plated aluminium content will be increased by 2wt% as 0.1mol/L NaF is added to the bath.
基金Project(51574135)supported by the National Natural Science Foundation of ChinaProject(KKPT201563022)supported by the Collaborative Innovation Center of Kunming University of Science and Technology,China
文摘Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.
文摘The effect of different concentrations of benzaldehyde on the electrodeposition of Ni–W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline bath(p H 8.0) contained stoichiometric amounts of nickel sulfate, sodium tungstate, and trisodium citrate as precursors. The corrosion resistance of the Ni–W-alloy-coated specimens in 0.2 mol/L H2SO4 was studied using various electrochemical techniques. Tafel polarization studies reveal that the alloy coatings obtained from the bath containing 50 ppm benzaldehyde exhibit a protection efficiency of 95.33%. The corrosion rate also decreases by 21.5 times compared with that of the blank. A higher charge-transfer resistance of 1159.40 ?·cm2 and a lower double-layer capacitance of 29.4 μF·cm-2 further confirm the better corrosion resistance of the alloy coating. X-ray diffraction studies reveal that the deposits on the mild steel surface are consisted of nanocrystals. A lower surface roughness value(Rmax) of the deposits is confirmed by atomic force microscopy.
文摘The air oxidation of Cu Ni alloys with 50% and 70% nickel (mole fraction) at 800?℃ was studied. The kinetic curves for the oxidation of the two alloys are complex and deviate from the parabolic rate law. Typical double layered scales are produced, which consist of a CuO outer layer and an inner layer containing a mixture of Cu 2O and NiO with many pores. Cu 50Ni presents a small degree of internal oxidation of nickel, which is observed in many binary double phase systems, but is quite rare in single phase systems.
文摘The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.
基金supported by the National Natural Science Foundation of China(grant no.21403099)the Natural Science Foundation of Gansu Province(grant no.145RJZA193)the Natural Science Funds for Distinguished Young Scholars of Gansu Province(grant no.1606RJDA320)
文摘Alloy materials have attracted increasing attentions because they possess superior electrical conductivity which can contribute to excellent electrochemical performance. Herein a dendritic Ni;C alloy material has been prepared by the pyrolysis of nickel acetylacetonate employing oleylamine as a reductant and 1-octadecene or octadecane as the solvent. The current–voltage curves indicating that the electrical conductivity of Ni;C is higher than that of nickel oxide. Electrochemical testing indicates that a high specific capacity of 390 C/g is found in alkaline electrolyte at 0.5 A/g, and deliver excellent rate characteristic as well as cycle life. The excellent electrochemical performance may be attributed to its high electrical conductivity and dendritic nanostructure that can promote diffusion of electrolyte ions. In addition, the AC//Ni;C asymmetric supercapacitor has been assembled at a cell voltages between 0 and 1.6 V, achieving a maximum energy density of 37 Wh/kg(at a power density of 0.3995 k W/kg), and this manifests that the Ni;C alloy is a promising electrode material for electrochemical energy storage.