An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LO...An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time.展开更多
In this paper dry reforming of methane (DRM) was carried out over nanocrystalline MgAl2O4-supported Ni catalysts with various Ni loadings. Nanocrystalline MgAl2O4 spinel with high specific surface area was synthesiz...In this paper dry reforming of methane (DRM) was carried out over nanocrystalline MgAl2O4-supported Ni catalysts with various Ni loadings. Nanocrystalline MgAl2O4 spinel with high specific surface area was synthesized by a co-precipitation method with the addition of pluronic P123 triblock copolymer as surfactant, and employed as catalyst support. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption, H2 chemisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), temperature- programmed desorption (TPD) and transmission and scanning electron microscopies (TEM, SEM) techniques. The obtained results showed that the catalyst support has a nanocrystalline structure (crystal size: about 5 nm) with a high specific surface area (175 m2 g-1) and a mesoporous structure. Increasing in nickel content decreased the specific surface area and nickel dispersion. The prepared catalysts showed high catalytic activity and stability during the reaction. SEM analysis revealed that whisker type carbon deposited over the spent catalysts and increasing in nickel loading increased the amount of deposited carbon. The nickel catalyst with 7 wt% of nickel showed the highest catalytic activity.展开更多
In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. T...In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.展开更多
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco...The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.展开更多
The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on ...The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on the ethylene/1-hexene copolymerization catalyzed by nickel complexes with different steric ligands remains to be refined.Here,three α-dimine nickel catalysts are used to study the ligand effect on catalytic performance in the ethylene/1-hexene copolymerization.Reaction activity,molecular weight,phase-transition temperature and branching density of the resultant copolymer are measured to evaluate the catalytic performance.The results indicate that the steric ligands could exert great effect on the copolymerization.As for the chemical valence of Ni species,detailed EPR demonstrate that the presence of excess xo-catalyst can reduce Ni(Ⅱ)to the lower valence and affect the catalytic performance.展开更多
The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffrac...The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and activity evaluation, the physico-chemical and catalytic properties of the catalysts were investigated. Among the catalysts tested, the SiO2 supported nickel catalyst showed the highest activity and selectivity towards m-phenylenediamine, over which 97.3% m-dinitrobenzene conversion and 95.1% m-phenylenediamine yield were obtained at 373K under hydrogen pressure of 2.6MPa after reaction for 6 h when using ethanol as solvent. Although TiO2 and diatomite supported nickel catalysts also presented high activity, they had lower selectivity towards m-phenylenediamine. As for γ-Al2O3 and MgO supported catalysts were almost inactive for the object reaction. It was shown that both the activity and selectivity of the catalysts were strongly depended on the interaction between nickel and the support. The higher activities of Ni/SiO2, Ni/TiO2 and Ni/diatomite could be attributed to the weaker metal-support interaction, on which Ni species presented as crystallized Ni metal particles. On the other hand, there existed strong metal-support interaction in Ni/MgO and Ni γ-Al2O3, which causes these catalysts more difficult to be reduced and the availability of Ni active sites decreased, resulting in their low catalytic activity.展开更多
Nanocrystalline calcium aluminates with different CaO/Al2O3 ratios were prepared by a facile co-precipitation method using Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG...Nanocrystalline calcium aluminates with different CaO/Al2O3 ratios were prepared by a facile co-precipitation method using Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG, MW: 5800) as a surfactant. They were employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction and oxidation (TPR-TPO), and scanning electron microscopy (SEM) techniques. Catalysts showed a relatively high catalytic activity and stability. TPR analysis revealed that the catalysts with higher CaO content are more difficult to be reduced. TPO analysis showed that the 5 wt%Ni/CA and 5 wt%Ni/C12A7 catalysts with higher CaO amount were effective against coke deposition.展开更多
The efficient copolymerization of olefin with polar monomers using nickel-based catalysts presents a longstanding challenge. In this contribution, three phosphine-benzocyclone ligands and corresponding neutral nickel ...The efficient copolymerization of olefin with polar monomers using nickel-based catalysts presents a longstanding challenge. In this contribution, three phosphine-benzocyclone ligands and corresponding neutral nickel catalysts(Ni1: Ar = Ph;Ni2: Ar = 2-(C_(6)H_(5))C_(6)H_(4);Ni3: Ar = 2-[2',6'-(Me O)_(2)-C_(6)H3]C_(6)H_(4)) were prepared and applied for the ethylene polymerization and copolymerization with polar monomers without any cocatalyst. The bulky substituent groups in complexes Ni2 and Ni3 contributed to high catalytic activities(up to 7.24×10^(6) and 9.04×10^(6)g·mol Ni^(-1)·h^(-1), respectively), and produced high-molecular-weight polyethylene(Mw up to 545.7 k Da). Complex Ni3 exhibited high activities for ethylene polymerization at the level of 10^(6) g·mol Ni^(-1)·h^(-1) across a wide range from 30 ℃ to 120 ℃, exhibiting excellent high temperature tolerance. These nickel complexes were also effectively employed in the copolymerization of ethylene with methyl acrylate, ethyl acrylate, butyl acrylate and lauryl acrylate, producing copolymers with high molecular weights(Mw up to 80.5 k Da) and high polar monomer incorporation(up to 8.2 mol%). Microstructure analyses revealed that the introduction of large sterically hindered substituents facilitated the incorporation of polar functional units into the polymer backbone. This study demonstrates the potential of these nickel-based catalysts for efficient copolymerization of olefin with polar monomers.展开更多
Olefin polymerization is one of the most im portant chemical reactions in industry.This work presents a strategy that emphasizes the synergistic meta/poro-steric hindrance of N-aryl groups and electronic effects in ne...Olefin polymerization is one of the most im portant chemical reactions in industry.This work presents a strategy that emphasizes the synergistic meta/poro-steric hindrance of N-aryl groups and electronic effects in newly synthesized neutral salicylaldiminato nickel catalysts.These nickel(Ⅱ)catalysts exhibit exceptional thermostability,ranging from 30℃to 130℃,demonstrating enhanced catalytic activities and broadly regulated polyethylene molecular weights(3-341 kg·mol^(-1))and controlled polymer branch density(2-102 brs/1000C).The preferred catalyst Ni3 with concerted steric and electronic effects enables the production of solid-state semi-crystalline polyethylene materials at temperatures below 90℃.Notably,Ni3 exhibits an impressive tolerance of 110℃and can withstand even the challenging polymerization temperature of 130℃,leading to the production of polyethylene wax and oil.Also,functionalized polyethylene is produced.展开更多
The electrocatalytic reduction of carbon dioxide(CO_(2))is considered an effective strategy for mitigating the energy crisis and the greenhouse effect.Nickel is widely used in single-atom catalysts(SACs)owing to its s...The electrocatalytic reduction of carbon dioxide(CO_(2))is considered an effective strategy for mitigating the energy crisis and the greenhouse effect.Nickel is widely used in single-atom catalysts(SACs)owing to its special electronic structure.In this minireview,the basic principles of Ni SACs in the electrocatalytic reduction of CO_(2) to CO are first described.Subsequently,Ni SACs are divided into three categories depending on different strategies used to improve properties.The synthesis,morphology,performance and theoretical calculations of the catalysts are also described.Finally,an overview of the existing challenges and perspectives of Ni SACs for CO_(2) reduction is presented.展开更多
A nickel catalyst was modeled with ligand L^2, [NH = CH-CH = CH-O]^-, whichshould have potential use as a syndiotactic polyolefin catalyst, and the reaction mechanim wasstudied by theoretical calculations using the de...A nickel catalyst was modeled with ligand L^2, [NH = CH-CH = CH-O]^-, whichshould have potential use as a syndiotactic polyolefin catalyst, and the reaction mechanim wasstudied by theoretical calculations using the density functional method at the B3LYP/LANL2MB level.The mechanism involves the formation of the intermediate [NiL^2Me]^+, in which the metal occupies aT-shaped geometry. This intermediate has two possible structures with the methyl group trans eitherto the oxygen or to the nitrogen atom of L^2. The results show that both structures can lead to thedesired product via similar reaction paths, A and B. Thus, the polymerization could be considered astaking place either with the alkyl group occupying the position trans to the Ni-O or trans to theNi-N bond in the catalyst. The polymerization process thus favors the catalysis of syndiotacticpolyolefins. The syndiotactic synthesis effects could also be enhanced by variations in the ligandsubstituents. From energy considerations, we can conclude that it is more favorable for the methylgroup to occupy the trans-O position to form a complex than to occupy the trans-N position. Frombond length considerations, it is also more favoured for ethene to occupy the trans-O position thanto occupy the trans-N position.展开更多
2,5-Bis(hydroxymethyl)furan(BHMF)is a high-value,bio-based,rigid diol that resembles aromatic monomers for the production of different polyesters.In this work,a carbon nanotubes(CNTs)-supported nickel catalyst(Ni/CNTs...2,5-Bis(hydroxymethyl)furan(BHMF)is a high-value,bio-based,rigid diol that resembles aromatic monomers for the production of different polyesters.In this work,a carbon nanotubes(CNTs)-supported nickel catalyst(Ni/CNTs)was prepared and used for the selective hydrogenation of 5-hydroxymethylfurfural(HMF)to BHMF at low hydrogen pressure.The prepared catalyst was analyzed by nitrogen adsorption-desorption isotherms,X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).According to kinetic studies,the rate constant for BHMF formation is significantly larger than that for the formation of the byproduct,5-methyl furfural(MF).At optimal reaction conditions,conversion and selectivity rates of HMF and BHMF were 99.8%and 95.0%,respectively.The mechanistic study indicated the coexistence of Ni0 and Ni2+species on the catalyst surface affects the catalytic performance.A possible mechanism was proposed to describe the synergetic effects of Ni0 and Ni2+.Furthermore,the catalyst can be easily separated from the reaction mixture for recycling.展开更多
The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were ...The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were synthesized,with nickel loading of 8 wt%,using the incipient wetness,wet impregnation,and modified equilibrium deposition filtration methods.The catalysts' surface and bulk properties were determined by inductively coupled plasma(ICP),N2 adsorption-desorption isotherms(BET),X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and temperature-programmed reduction(TPR).Used catalysts were characterized by techniques such as elemental analysis and SEM in order to determine the level of carbon that was deposited and catalyst morphology.The results indicated that the synthesis method affected the textural,structural and surface properties of the catalysts,differentiating the dispersion and the kind of nickel species on alumina's surface.The formation of nickel aluminate phases was confirmed by the XRD and TPR analysis and the β-peak of the Ni/Al-edf catalyst was higher than in the other two catalysts,indicating that the nickel aluminate species of this catalyst were more reducible.Both Ni/Al-wet and Ni/Al-edf catalysts showed increasing CO2 selectivities and approximately constant CO selectivities for temperatures above 550℃,indicating that these catalysts successfully catalyze the water gas shift reaction.It was also confirmed that the Ni/Al-edf catalyst had the highest values for glycerol to gaseous products conversion,hydrogen yield,allyl alcohol,acetaldehyde,and acetic acid selectivities at 650℃ and the lowest carbon deposition of the catalysts tested.The correlation of the catalysts' structural properties,dispersion and reducibility with catalytic performance reveals that the EDF method can provide catalysts with higher specific surface area and active phase's dispersion,that are easier to reduce,more active and selective to hydrogen production,and more resistant to carbon deposition.展开更多
Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts wer...Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts were characterized by XRD and TPR. Afterreduction, the activity of the catalysts in the CO_2 reforming of methane was tested. Ni-basedcatalysts from La_2NiO_4 precursors were the most active and stable catalyst after calcination above850 ℃, which gave a methane conversion of 0.025 mmol/(g·s) for those prepared by the PC methodand 0.020 mmol/(g·s) by the CC method. It was proposed that the well-defined structure and lowerreducibility is responsible for the unusual catalytic behavior observed over the pre-reducedLa2NiO_4 catalyst.展开更多
Polyolefins are globally important plastics.Molecular weight and molecular weight distribution are two key parameters for determining the properties of polyolefin materials.In this contribution,we develop a strategy f...Polyolefins are globally important plastics.Molecular weight and molecular weight distribution are two key parameters for determining the properties of polyolefin materials.In this contribution,we develop a strategy for combining the macrocyclic framework and the binuclear effect into the benchmarkα-diimine late transition metal catalysts,and thus macrocyclic binuclearα-diimine nickel catalysts(Ni_(2)-Me and Ni_(2)-iPr)are prepared.Compared to the classical Brookhart's acyclic mononuclearα-diimine nickel analogues(Ni_(1)-Me and Ni_(1)-iPr),these nickel catalysts exhibit enhanced thermostability(up to 110℃)and produce polyethylenes with higher molecular weights(up to 7 times)and lower branching densities(as low as 9 branches/1000C)in methylaluminoxane(MAO)activated ethylene polymerization.This translates into the ability of the catalyst to afford more linear high molecular weight polyethylenes.In particular,bimodal polyethylenes with broad molecular weight distributions(Mw/Mn=8.08-14.66)are generated by the sole catalyst.This work affords diverse polyethylenes.展开更多
Selective hydrogenation over earth-abundant metal catalysts is challenging but particularly valuable for practical applications in heterogeneous catalysis.Herein,we demonstrate that the catalytic selectivity of the co...Selective hydrogenation over earth-abundant metal catalysts is challenging but particularly valuable for practical applications in heterogeneous catalysis.Herein,we demonstrate that the catalytic selectivity of the commercial Raney nickel catalyst can be greatly tuned by modulation of the nickel surface by silica.Using quinoline hydrogenation as a model,we show that the silica-modified Raney nickel catalysts exhibit good activity,excellent selectivity,and long stability,whereas the undesired over-hydrogenation reactions are effectively hindered.In contrast,the pristine Raney nickel catalyst shows inferior selectivity for the targeted product.Mechanistic studies confirm a positive role of silica to facilitate the desorption of 1,2,3,4-tetrahydroquinoline from the catalyst surface,thus enhancing the product selectivity.展开更多
The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nick...The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nickel-based catalysts have great application prospects in the industrialization process of olefin coordination polymerization.In this work,various N-aryl substituents with different electronic effects were synthesized and introduced intoα-diimine ligands.The aspreparedα-diimine nickel catalysts showed high polymerization activity(0.9×10^(7)–3.0×10^(7)g·mol^(−1)·h^(−1))in ethylene polymerization,generating polyethylene products with adjustable molecular weights(Mn values:7.4×10^(4)–146.9×10^(4)g·mol^(−1))and branching densities(31/1000 C–68/1000 C).The resulting polyethylene products showed excellent mechanical properties,with high tensile strength(up to 25.0 MPa)and high strain at break values(up to 3890%).The copolymerization of ethylene and polar monomers can also be achieved by these nicekel complexes,ultimately preparing functionalized polyolefins.展开更多
Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the mo...Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the most promising solutions for providing hydrogen fuel.Nickel iron bimetallic electrocatalysts have abundant sources,low cost,clean and pollution-free properties,and strong catalytic performance,This article mainly reviews the development and research of bimetallic nickel iron oxides and nickel iron alloys in recent years,and explores their synthesis methods,properties,and stability in depth.展开更多
Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their ca...Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their catalytic activity towards syngas methanation reaction was also investigated using a fixed-bed integral reactor. It was demonstrated that the addition of manganese to Ni/Al2O3 catalysts can increase the catalyst surface area and average pore volume, but decrease NiO crystallite size, leading to higher activity and stability. The effects of reaction temperature, pressure and weight hourly space velocity (WHSV) on carbon oxides conversion and CH4 formation rate were also studied. High carbon oxides conversion, CH4 selectivity and formation rate were achieved at the reaction temperature range of 280 300℃.展开更多
The steam reforming of methane over NiO/ZnO mixed oxides with different nickel contents was studied. Solids to x% Ni/ZnO (x = 4 and 10%) were deposited on ZnO by impregnation from nickel nitrate solution;after vaporiz...The steam reforming of methane over NiO/ZnO mixed oxides with different nickel contents was studied. Solids to x% Ni/ZnO (x = 4 and 10%) were deposited on ZnO by impregnation from nickel nitrate solution;after vaporization the solid is calcined at 500°C for 6 h. The catalysts were characterized by X-ray diffraction (XRD) and BET method, scanning electron microscopy (SEM) and temperature programmed reduction (TPR). The XRD patterns revealed the NiO phase for all calcined catalysts. The chemical analysis confirmed the theoretical values of nickel. The catalysts were pre-treated under hydrogen at 500°C in situ, overnight before testing for the steam reforming of methane reaction (CH<sub>4</sub>/H<sub>2</sub>O/Ar = 10/10/80) in the temperature range (475°C - 650°C) under atmospheric pressure. The activities of both catalysts were investigated in a fixed-bed reactor for the Methane Steam Reforming (MSR) reaction. Globally, it was shown that the catalyst 10% nickel content has an important effect on the catalytic performances of solids i.e. the better results of hydrogen production were obtained with 10% wt. Ni/ZnO (28 ′ 10-<sup>3</sup> mol/g catalyst).展开更多
基金supported by the Ministry of Science and Higher Education of the Russian Federation within governmental order for Boreskov Institute of Catalysis SB RAS (projects FWUR-2024–0038, FWUR-2024–0032 and FWUR2024–0039)
文摘An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time.
文摘In this paper dry reforming of methane (DRM) was carried out over nanocrystalline MgAl2O4-supported Ni catalysts with various Ni loadings. Nanocrystalline MgAl2O4 spinel with high specific surface area was synthesized by a co-precipitation method with the addition of pluronic P123 triblock copolymer as surfactant, and employed as catalyst support. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption, H2 chemisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), temperature- programmed desorption (TPD) and transmission and scanning electron microscopies (TEM, SEM) techniques. The obtained results showed that the catalyst support has a nanocrystalline structure (crystal size: about 5 nm) with a high specific surface area (175 m2 g-1) and a mesoporous structure. Increasing in nickel content decreased the specific surface area and nickel dispersion. The prepared catalysts showed high catalytic activity and stability during the reaction. SEM analysis revealed that whisker type carbon deposited over the spent catalysts and increasing in nickel loading increased the amount of deposited carbon. The nickel catalyst with 7 wt% of nickel showed the highest catalytic activity.
基金supported by the South-Central University for Nationalities(CZZ12002)
文摘In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.
基金the support of the Smart Mix Program of The Netherlands Ministry of Economic Affairs, Agriculture and Innovation and The Netherlands Ministry of Education, Culture and Science (Grant no. 053.70.011)
文摘The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.
基金Financial support from the National Key Research and Development Program(2016YFB0302403)is gratefully acknowledged.
文摘The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on the ethylene/1-hexene copolymerization catalyzed by nickel complexes with different steric ligands remains to be refined.Here,three α-dimine nickel catalysts are used to study the ligand effect on catalytic performance in the ethylene/1-hexene copolymerization.Reaction activity,molecular weight,phase-transition temperature and branching density of the resultant copolymer are measured to evaluate the catalytic performance.The results indicate that the steric ligands could exert great effect on the copolymerization.As for the chemical valence of Ni species,detailed EPR demonstrate that the presence of excess xo-catalyst can reduce Ni(Ⅱ)to the lower valence and affect the catalytic performance.
文摘The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and activity evaluation, the physico-chemical and catalytic properties of the catalysts were investigated. Among the catalysts tested, the SiO2 supported nickel catalyst showed the highest activity and selectivity towards m-phenylenediamine, over which 97.3% m-dinitrobenzene conversion and 95.1% m-phenylenediamine yield were obtained at 373K under hydrogen pressure of 2.6MPa after reaction for 6 h when using ethanol as solvent. Although TiO2 and diatomite supported nickel catalysts also presented high activity, they had lower selectivity towards m-phenylenediamine. As for γ-Al2O3 and MgO supported catalysts were almost inactive for the object reaction. It was shown that both the activity and selectivity of the catalysts were strongly depended on the interaction between nickel and the support. The higher activities of Ni/SiO2, Ni/TiO2 and Ni/diatomite could be attributed to the weaker metal-support interaction, on which Ni species presented as crystallized Ni metal particles. On the other hand, there existed strong metal-support interaction in Ni/MgO and Ni γ-Al2O3, which causes these catalysts more difficult to be reduced and the availability of Ni active sites decreased, resulting in their low catalytic activity.
文摘Nanocrystalline calcium aluminates with different CaO/Al2O3 ratios were prepared by a facile co-precipitation method using Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG, MW: 5800) as a surfactant. They were employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction and oxidation (TPR-TPO), and scanning electron microscopy (SEM) techniques. Catalysts showed a relatively high catalytic activity and stability. TPR analysis revealed that the catalysts with higher CaO content are more difficult to be reduced. TPO analysis showed that the 5 wt%Ni/CA and 5 wt%Ni/C12A7 catalysts with higher CaO amount were effective against coke deposition.
基金financially supported by the National Natural Science Foundation of China (No. 52130307)。
文摘The efficient copolymerization of olefin with polar monomers using nickel-based catalysts presents a longstanding challenge. In this contribution, three phosphine-benzocyclone ligands and corresponding neutral nickel catalysts(Ni1: Ar = Ph;Ni2: Ar = 2-(C_(6)H_(5))C_(6)H_(4);Ni3: Ar = 2-[2',6'-(Me O)_(2)-C_(6)H3]C_(6)H_(4)) were prepared and applied for the ethylene polymerization and copolymerization with polar monomers without any cocatalyst. The bulky substituent groups in complexes Ni2 and Ni3 contributed to high catalytic activities(up to 7.24×10^(6) and 9.04×10^(6)g·mol Ni^(-1)·h^(-1), respectively), and produced high-molecular-weight polyethylene(Mw up to 545.7 k Da). Complex Ni3 exhibited high activities for ethylene polymerization at the level of 10^(6) g·mol Ni^(-1)·h^(-1) across a wide range from 30 ℃ to 120 ℃, exhibiting excellent high temperature tolerance. These nickel complexes were also effectively employed in the copolymerization of ethylene with methyl acrylate, ethyl acrylate, butyl acrylate and lauryl acrylate, producing copolymers with high molecular weights(Mw up to 80.5 k Da) and high polar monomer incorporation(up to 8.2 mol%). Microstructure analyses revealed that the introduction of large sterically hindered substituents facilitated the incorporation of polar functional units into the polymer backbone. This study demonstrates the potential of these nickel-based catalysts for efficient copolymerization of olefin with polar monomers.
基金financially supported by the National Natural Science Foundation of China(Nos.22122110 and U23B6011 for Z.J.)the Jilin Provincial Science and Technology Department Program(No.20210101070JC for Y.C.)。
文摘Olefin polymerization is one of the most im portant chemical reactions in industry.This work presents a strategy that emphasizes the synergistic meta/poro-steric hindrance of N-aryl groups and electronic effects in newly synthesized neutral salicylaldiminato nickel catalysts.These nickel(Ⅱ)catalysts exhibit exceptional thermostability,ranging from 30℃to 130℃,demonstrating enhanced catalytic activities and broadly regulated polyethylene molecular weights(3-341 kg·mol^(-1))and controlled polymer branch density(2-102 brs/1000C).The preferred catalyst Ni3 with concerted steric and electronic effects enables the production of solid-state semi-crystalline polyethylene materials at temperatures below 90℃.Notably,Ni3 exhibits an impressive tolerance of 110℃and can withstand even the challenging polymerization temperature of 130℃,leading to the production of polyethylene wax and oil.Also,functionalized polyethylene is produced.
基金This work was supported by the National Natural Science Foundation of China(22322805,22178104,U22B20143)Shanghai Municipal Science and Technology Major Project,the Shanghai Scientific and Technological Innovation Project(22dz1205900)+1 种基金“the Fundamental Research Funds for the Central Universities”Shanghai Rising-Star Program(23QA1402200).
文摘The electrocatalytic reduction of carbon dioxide(CO_(2))is considered an effective strategy for mitigating the energy crisis and the greenhouse effect.Nickel is widely used in single-atom catalysts(SACs)owing to its special electronic structure.In this minireview,the basic principles of Ni SACs in the electrocatalytic reduction of CO_(2) to CO are first described.Subsequently,Ni SACs are divided into three categories depending on different strategies used to improve properties.The synthesis,morphology,performance and theoretical calculations of the catalysts are also described.Finally,an overview of the existing challenges and perspectives of Ni SACs for CO_(2) reduction is presented.
文摘A nickel catalyst was modeled with ligand L^2, [NH = CH-CH = CH-O]^-, whichshould have potential use as a syndiotactic polyolefin catalyst, and the reaction mechanim wasstudied by theoretical calculations using the density functional method at the B3LYP/LANL2MB level.The mechanism involves the formation of the intermediate [NiL^2Me]^+, in which the metal occupies aT-shaped geometry. This intermediate has two possible structures with the methyl group trans eitherto the oxygen or to the nitrogen atom of L^2. The results show that both structures can lead to thedesired product via similar reaction paths, A and B. Thus, the polymerization could be considered astaking place either with the alkyl group occupying the position trans to the Ni-O or trans to theNi-N bond in the catalyst. The polymerization process thus favors the catalysis of syndiotacticpolyolefins. The syndiotactic synthesis effects could also be enhanced by variations in the ligandsubstituents. From energy considerations, we can conclude that it is more favorable for the methylgroup to occupy the trans-O position to form a complex than to occupy the trans-N position. Frombond length considerations, it is also more favoured for ethene to occupy the trans-O position thanto occupy the trans-N position.
基金the financial support of the National Natural Science Foundation of China(Nos.22278121 and 21975070)the China Postdoctoral Science Foundation(2019 M662787)the Science and Technology Planning Project of Hunan Province(2021GK5083).
文摘2,5-Bis(hydroxymethyl)furan(BHMF)is a high-value,bio-based,rigid diol that resembles aromatic monomers for the production of different polyesters.In this work,a carbon nanotubes(CNTs)-supported nickel catalyst(Ni/CNTs)was prepared and used for the selective hydrogenation of 5-hydroxymethylfurfural(HMF)to BHMF at low hydrogen pressure.The prepared catalyst was analyzed by nitrogen adsorption-desorption isotherms,X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).According to kinetic studies,the rate constant for BHMF formation is significantly larger than that for the formation of the byproduct,5-methyl furfural(MF).At optimal reaction conditions,conversion and selectivity rates of HMF and BHMF were 99.8%and 95.0%,respectively.The mechanistic study indicated the coexistence of Ni0 and Ni2+species on the catalyst surface affects the catalytic performance.A possible mechanism was proposed to describe the synergetic effects of Ni0 and Ni2+.Furthermore,the catalyst can be easily separated from the reaction mixture for recycling.
基金Financial support by the program THALIS implemented within the framework of Education and Lifelong Learning Operational Programmeco-financed by the Hellenic Ministry of Education,Lifelong Learning and Religious Affairs and the European Social Fund,for the project 'Production of Energy Carriers from Biomass by Productsfinancial support provided by the Committee of the Special Account for Research Funds of the Technological Educational Institute of Western Macedonia(ELKE,TEIWM)
文摘The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were synthesized,with nickel loading of 8 wt%,using the incipient wetness,wet impregnation,and modified equilibrium deposition filtration methods.The catalysts' surface and bulk properties were determined by inductively coupled plasma(ICP),N2 adsorption-desorption isotherms(BET),X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and temperature-programmed reduction(TPR).Used catalysts were characterized by techniques such as elemental analysis and SEM in order to determine the level of carbon that was deposited and catalyst morphology.The results indicated that the synthesis method affected the textural,structural and surface properties of the catalysts,differentiating the dispersion and the kind of nickel species on alumina's surface.The formation of nickel aluminate phases was confirmed by the XRD and TPR analysis and the β-peak of the Ni/Al-edf catalyst was higher than in the other two catalysts,indicating that the nickel aluminate species of this catalyst were more reducible.Both Ni/Al-wet and Ni/Al-edf catalysts showed increasing CO2 selectivities and approximately constant CO selectivities for temperatures above 550℃,indicating that these catalysts successfully catalyze the water gas shift reaction.It was also confirmed that the Ni/Al-edf catalyst had the highest values for glycerol to gaseous products conversion,hydrogen yield,allyl alcohol,acetaldehyde,and acetic acid selectivities at 650℃ and the lowest carbon deposition of the catalysts tested.The correlation of the catalysts' structural properties,dispersion and reducibility with catalytic performance reveals that the EDF method can provide catalysts with higher specific surface area and active phase's dispersion,that are easier to reduce,more active and selective to hydrogen production,and more resistant to carbon deposition.
文摘Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts were characterized by XRD and TPR. Afterreduction, the activity of the catalysts in the CO_2 reforming of methane was tested. Ni-basedcatalysts from La_2NiO_4 precursors were the most active and stable catalyst after calcination above850 ℃, which gave a methane conversion of 0.025 mmol/(g·s) for those prepared by the PC methodand 0.020 mmol/(g·s) by the CC method. It was proposed that the well-defined structure and lowerreducibility is responsible for the unusual catalytic behavior observed over the pre-reducedLa2NiO_4 catalyst.
基金This work was supported by the National Natural Science Foundation of China(No.22122110)the Science and Technology Department Program of Jilin Province,China(No.20230101347JC).
文摘Polyolefins are globally important plastics.Molecular weight and molecular weight distribution are two key parameters for determining the properties of polyolefin materials.In this contribution,we develop a strategy for combining the macrocyclic framework and the binuclear effect into the benchmarkα-diimine late transition metal catalysts,and thus macrocyclic binuclearα-diimine nickel catalysts(Ni_(2)-Me and Ni_(2)-iPr)are prepared.Compared to the classical Brookhart's acyclic mononuclearα-diimine nickel analogues(Ni_(1)-Me and Ni_(1)-iPr),these nickel catalysts exhibit enhanced thermostability(up to 110℃)and produce polyethylenes with higher molecular weights(up to 7 times)and lower branching densities(as low as 9 branches/1000C)in methylaluminoxane(MAO)activated ethylene polymerization.This translates into the ability of the catalyst to afford more linear high molecular weight polyethylenes.In particular,bimodal polyethylenes with broad molecular weight distributions(Mw/Mn=8.08-14.66)are generated by the sole catalyst.This work affords diverse polyethylenes.
基金the National Key Research and Development Program of China(2022YFA1503502)National Natural Science Foundation of China(U21B20101,21932006,and 22202175)China Postdoctoral Science Foundation(2021M700119).
文摘Selective hydrogenation over earth-abundant metal catalysts is challenging but particularly valuable for practical applications in heterogeneous catalysis.Herein,we demonstrate that the catalytic selectivity of the commercial Raney nickel catalyst can be greatly tuned by modulation of the nickel surface by silica.Using quinoline hydrogenation as a model,we show that the silica-modified Raney nickel catalysts exhibit good activity,excellent selectivity,and long stability,whereas the undesired over-hydrogenation reactions are effectively hindered.In contrast,the pristine Raney nickel catalyst shows inferior selectivity for the targeted product.Mechanistic studies confirm a positive role of silica to facilitate the desorption of 1,2,3,4-tetrahydroquinoline from the catalyst surface,thus enhancing the product selectivity.
基金supported by the National Key R&D Program of China(2021YFA1501700)Fundamental Research Funds for the Central Universities(WK9990000142).
文摘The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nickel-based catalysts have great application prospects in the industrialization process of olefin coordination polymerization.In this work,various N-aryl substituents with different electronic effects were synthesized and introduced intoα-diimine ligands.The aspreparedα-diimine nickel catalysts showed high polymerization activity(0.9×10^(7)–3.0×10^(7)g·mol^(−1)·h^(−1))in ethylene polymerization,generating polyethylene products with adjustable molecular weights(Mn values:7.4×10^(4)–146.9×10^(4)g·mol^(−1))and branching densities(31/1000 C–68/1000 C).The resulting polyethylene products showed excellent mechanical properties,with high tensile strength(up to 25.0 MPa)and high strain at break values(up to 3890%).The copolymerization of ethylene and polar monomers can also be achieved by these nicekel complexes,ultimately preparing functionalized polyolefins.
文摘Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the most promising solutions for providing hydrogen fuel.Nickel iron bimetallic electrocatalysts have abundant sources,low cost,clean and pollution-free properties,and strong catalytic performance,This article mainly reviews the development and research of bimetallic nickel iron oxides and nickel iron alloys in recent years,and explores their synthesis methods,properties,and stability in depth.
基金supported by the National Science and Technology Supporting Plan (No. 2006BAE02B02)
文摘Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their catalytic activity towards syngas methanation reaction was also investigated using a fixed-bed integral reactor. It was demonstrated that the addition of manganese to Ni/Al2O3 catalysts can increase the catalyst surface area and average pore volume, but decrease NiO crystallite size, leading to higher activity and stability. The effects of reaction temperature, pressure and weight hourly space velocity (WHSV) on carbon oxides conversion and CH4 formation rate were also studied. High carbon oxides conversion, CH4 selectivity and formation rate were achieved at the reaction temperature range of 280 300℃.
文摘The steam reforming of methane over NiO/ZnO mixed oxides with different nickel contents was studied. Solids to x% Ni/ZnO (x = 4 and 10%) were deposited on ZnO by impregnation from nickel nitrate solution;after vaporization the solid is calcined at 500°C for 6 h. The catalysts were characterized by X-ray diffraction (XRD) and BET method, scanning electron microscopy (SEM) and temperature programmed reduction (TPR). The XRD patterns revealed the NiO phase for all calcined catalysts. The chemical analysis confirmed the theoretical values of nickel. The catalysts were pre-treated under hydrogen at 500°C in situ, overnight before testing for the steam reforming of methane reaction (CH<sub>4</sub>/H<sub>2</sub>O/Ar = 10/10/80) in the temperature range (475°C - 650°C) under atmospheric pressure. The activities of both catalysts were investigated in a fixed-bed reactor for the Methane Steam Reforming (MSR) reaction. Globally, it was shown that the catalyst 10% nickel content has an important effect on the catalytic performances of solids i.e. the better results of hydrogen production were obtained with 10% wt. Ni/ZnO (28 ′ 10-<sup>3</sup> mol/g catalyst).