期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Efficiency of high-loaded nickel catalysts modified by Mg in hydrogen storage/extraction using quinoline/decahydroquinoline pair as LOHC substrates
1
作者 Anton P.Koskin Jingsong Zhang +9 位作者 Olga B.Belskaya Olga A.Bulavchenko Darya A.Konovalova Sergey A.Stepanenko Arkadiy V.Ishchenko Irina G.Danilova Vyacheslav L.Yurpalov Yurii V.Larichev Roman G.Kukushkin Petr M.Yeletsky 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3245-3263,共19页
An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LO... An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time. 展开更多
关键词 Mg-modified catalysts High-loaded nickel catalyst Layered double hydroxides Hydrogen storage LOHC DEHYDROGENATION
下载PDF
CO_2 reforming of methane over nickel catalysts supported on nanocrystalline MgAl_2O_4 with high surface area 被引量:7
2
作者 Narges Hadian Mehran Rezaei +1 位作者 Zeinab Mosayebi Fereshteh Meshkani 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第2期200-206,共7页
In this paper dry reforming of methane (DRM) was carried out over nanocrystalline MgAl2O4-supported Ni catalysts with various Ni loadings. Nanocrystalline MgAl2O4 spinel with high specific surface area was synthesiz... In this paper dry reforming of methane (DRM) was carried out over nanocrystalline MgAl2O4-supported Ni catalysts with various Ni loadings. Nanocrystalline MgAl2O4 spinel with high specific surface area was synthesized by a co-precipitation method with the addition of pluronic P123 triblock copolymer as surfactant, and employed as catalyst support. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption, H2 chemisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), temperature- programmed desorption (TPD) and transmission and scanning electron microscopies (TEM, SEM) techniques. The obtained results showed that the catalyst support has a nanocrystalline structure (crystal size: about 5 nm) with a high specific surface area (175 m2 g-1) and a mesoporous structure. Increasing in nickel content decreased the specific surface area and nickel dispersion. The prepared catalysts showed high catalytic activity and stability during the reaction. SEM analysis revealed that whisker type carbon deposited over the spent catalysts and increasing in nickel loading increased the amount of deposited carbon. The nickel catalyst with 7 wt% of nickel showed the highest catalytic activity. 展开更多
关键词 dry reforming nickel catalysts magnesium aluminate
下载PDF
Nickel catalysts supported on MgO with different specific surface area for carbon dioxide reforming of methane 被引量:4
3
作者 Luming Zhang Lin Li +2 位作者 Yuhua Zhang Yanxi Zhao Jinlin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第1期66-72,共7页
In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. T... In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species. 展开更多
关键词 carbon dioxide reforming of methane magnesium oxide nickel catalysts specific surface area
下载PDF
Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming 被引量:2
4
作者 Tomas van Haasterecht Marten Swart +1 位作者 Krijn P.de Jong Johannes Hendrik Bitter 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期287-294,共8页
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco... The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior. 展开更多
关键词 Aqueous phase reforming Particle growth Catalyst stability Ostwald ripening Leaching nickel catalysts Particle size effect Support effect
下载PDF
Study on ethylene/1-hexene copolymerization catalyzed by α-diimine nickel catalysts with different ligands--Dedicated to Professor Xiuwen Han on the occasion of her 80th birthday
5
作者 Yusheng Xing Haojie Yu +4 位作者 Li Wang Nan Wang Lei Zhu Ruixue Liang Md Alim Uddin 《Magnetic Resonance Letters》 2021年第2期131-141,共11页
The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on ... The structure of polyolefin has an important influence on its performance and application.Ethylene/1-hexene copolymerization is one of the important ways to control the structure of the polyolefin.However,research on the ethylene/1-hexene copolymerization catalyzed by nickel complexes with different steric ligands remains to be refined.Here,three α-dimine nickel catalysts are used to study the ligand effect on catalytic performance in the ethylene/1-hexene copolymerization.Reaction activity,molecular weight,phase-transition temperature and branching density of the resultant copolymer are measured to evaluate the catalytic performance.The results indicate that the steric ligands could exert great effect on the copolymerization.As for the chemical valence of Ni species,detailed EPR demonstrate that the presence of excess xo-catalyst can reduce Ni(Ⅱ)to the lower valence and affect the catalytic performance. 展开更多
关键词 α-diimine nickel catalysts COPOLYMERIZATION Microstructure EPR spectroscopy
下载PDF
Effects of the Supports on Activity of Supported Nickel Catalysts for Hydrogenation of m-Dinitrobenzene to m-Phenylenediamine 被引量:10
6
作者 刘迎新 陈吉祥 张继炎 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期63-67,共5页
The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffrac... The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and activity evaluation, the physico-chemical and catalytic properties of the catalysts were investigated. Among the catalysts tested, the SiO2 supported nickel catalyst showed the highest activity and selectivity towards m-phenylenediamine, over which 97.3% m-dinitrobenzene conversion and 95.1% m-phenylenediamine yield were obtained at 373K under hydrogen pressure of 2.6MPa after reaction for 6 h when using ethanol as solvent. Although TiO2 and diatomite supported nickel catalysts also presented high activity, they had lower selectivity towards m-phenylenediamine. As for γ-Al2O3 and MgO supported catalysts were almost inactive for the object reaction. It was shown that both the activity and selectivity of the catalysts were strongly depended on the interaction between nickel and the support. The higher activities of Ni/SiO2, Ni/TiO2 and Ni/diatomite could be attributed to the weaker metal-support interaction, on which Ni species presented as crystallized Ni metal particles. On the other hand, there existed strong metal-support interaction in Ni/MgO and Ni γ-Al2O3, which causes these catalysts more difficult to be reduced and the availability of Ni active sites decreased, resulting in their low catalytic activity. 展开更多
关键词 HYDROGENATION M-PHENYLENEDIAMINE M-DINITROBENZENE supported nickel catalyst metal-support interaction
下载PDF
Dry reforming reaction over nickel catalysts supported on nanocrystalline calcium aluminates with different CaO/Al_2O_3 ratios
7
作者 Atiyeh Ranjbar Mehran Rezaei 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第2期178-183,共6页
Nanocrystalline calcium aluminates with different CaO/Al2O3 ratios were prepared by a facile co-precipitation method using Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG... Nanocrystalline calcium aluminates with different CaO/Al2O3 ratios were prepared by a facile co-precipitation method using Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG, MW: 5800) as a surfactant. They were employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction and oxidation (TPR-TPO), and scanning electron microscopy (SEM) techniques. Catalysts showed a relatively high catalytic activity and stability. TPR analysis revealed that the catalysts with higher CaO content are more difficult to be reduced. TPO analysis showed that the 5 wt%Ni/CA and 5 wt%Ni/C12A7 catalysts with higher CaO amount were effective against coke deposition. 展开更多
关键词 calcium aluminate nickel catalyst dry reforming
下载PDF
Phosphine/Benzocyclone-based Neutral Nickel Catalysts for Ethylene Polymerization and Copolymerization with Polar Monomers 被引量:2
8
作者 Fei Wang Li Pan +2 位作者 Vladislav A.Tuskaev Svetlana Ch.Gagieva Yue-Sheng Li 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第2期202-212,I0007,共12页
The efficient copolymerization of olefin with polar monomers using nickel-based catalysts presents a longstanding challenge. In this contribution, three phosphine-benzocyclone ligands and corresponding neutral nickel ... The efficient copolymerization of olefin with polar monomers using nickel-based catalysts presents a longstanding challenge. In this contribution, three phosphine-benzocyclone ligands and corresponding neutral nickel catalysts(Ni1: Ar = Ph;Ni2: Ar = 2-(C_(6)H_(5))C_(6)H_(4);Ni3: Ar = 2-[2',6'-(Me O)_(2)-C_(6)H3]C_(6)H_(4)) were prepared and applied for the ethylene polymerization and copolymerization with polar monomers without any cocatalyst. The bulky substituent groups in complexes Ni2 and Ni3 contributed to high catalytic activities(up to 7.24×10^(6) and 9.04×10^(6)g·mol Ni^(-1)·h^(-1), respectively), and produced high-molecular-weight polyethylene(Mw up to 545.7 k Da). Complex Ni3 exhibited high activities for ethylene polymerization at the level of 10^(6) g·mol Ni^(-1)·h^(-1) across a wide range from 30 ℃ to 120 ℃, exhibiting excellent high temperature tolerance. These nickel complexes were also effectively employed in the copolymerization of ethylene with methyl acrylate, ethyl acrylate, butyl acrylate and lauryl acrylate, producing copolymers with high molecular weights(Mw up to 80.5 k Da) and high polar monomer incorporation(up to 8.2 mol%). Microstructure analyses revealed that the introduction of large sterically hindered substituents facilitated the incorporation of polar functional units into the polymer backbone. This study demonstrates the potential of these nickel-based catalysts for efficient copolymerization of olefin with polar monomers. 展开更多
关键词 Neutral nickel catalyst Ethylene polymerization COPOLYMERIZATION Polar acrylate monomers
原文传递
Concerted Steric and Electronic Strategy in Thermostable Salicylaldiminato Nickel Catalysts for Ethylene(Co)polymerization
9
作者 Hong-Yu Ji Hong-Liang Mu +3 位作者 Chun-Feng Tang Yu-Xing Zhang Yue Chi Zhong-Bao Jian 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第8期1085-1092,共8页
Olefin polymerization is one of the most im portant chemical reactions in industry.This work presents a strategy that emphasizes the synergistic meta/poro-steric hindrance of N-aryl groups and electronic effects in ne... Olefin polymerization is one of the most im portant chemical reactions in industry.This work presents a strategy that emphasizes the synergistic meta/poro-steric hindrance of N-aryl groups and electronic effects in newly synthesized neutral salicylaldiminato nickel catalysts.These nickel(Ⅱ)catalysts exhibit exceptional thermostability,ranging from 30℃to 130℃,demonstrating enhanced catalytic activities and broadly regulated polyethylene molecular weights(3-341 kg·mol^(-1))and controlled polymer branch density(2-102 brs/1000C).The preferred catalyst Ni3 with concerted steric and electronic effects enables the production of solid-state semi-crystalline polyethylene materials at temperatures below 90℃.Notably,Ni3 exhibits an impressive tolerance of 110℃and can withstand even the challenging polymerization temperature of 130℃,leading to the production of polyethylene wax and oil.Also,functionalized polyethylene is produced. 展开更多
关键词 POLYOLEFIN Salicylaldiminato ligand nickel catalyst Oil WAX
原文传递
Recent progress in nickel single-atom catalysts for the electroreduction of CO_(2) to CO
10
作者 Ziyan Yang Rongzhen Chen +2 位作者 Ling Zhang Yuhang Li Chunzhong Li 《Industrial Chemistry & Materials》 2024年第4期533-555,共23页
The electrocatalytic reduction of carbon dioxide(CO_(2))is considered an effective strategy for mitigating the energy crisis and the greenhouse effect.Nickel is widely used in single-atom catalysts(SACs)owing to its s... The electrocatalytic reduction of carbon dioxide(CO_(2))is considered an effective strategy for mitigating the energy crisis and the greenhouse effect.Nickel is widely used in single-atom catalysts(SACs)owing to its special electronic structure.In this minireview,the basic principles of Ni SACs in the electrocatalytic reduction of CO_(2) to CO are first described.Subsequently,Ni SACs are divided into three categories depending on different strategies used to improve properties.The synthesis,morphology,performance and theoretical calculations of the catalysts are also described.Finally,an overview of the existing challenges and perspectives of Ni SACs for CO_(2) reduction is presented. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS nickel single-atom catalysts
下载PDF
Design and Theoretical Study of Nickel Catalysts for Syndiotactic Polyolefins 被引量:1
11
作者 刘颖 刘跃 +2 位作者 DREW G.B.Michaelb 刘佳雯 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2003年第5期481-484,共4页
A nickel catalyst was modeled with ligand L^2, [NH = CH-CH = CH-O]^-, whichshould have potential use as a syndiotactic polyolefin catalyst, and the reaction mechanim wasstudied by theoretical calculations using the de... A nickel catalyst was modeled with ligand L^2, [NH = CH-CH = CH-O]^-, whichshould have potential use as a syndiotactic polyolefin catalyst, and the reaction mechanim wasstudied by theoretical calculations using the density functional method at the B3LYP/LANL2MB level.The mechanism involves the formation of the intermediate [NiL^2Me]^+, in which the metal occupies aT-shaped geometry. This intermediate has two possible structures with the methyl group trans eitherto the oxygen or to the nitrogen atom of L^2. The results show that both structures can lead to thedesired product via similar reaction paths, A and B. Thus, the polymerization could be considered astaking place either with the alkyl group occupying the position trans to the Ni-O or trans to theNi-N bond in the catalyst. The polymerization process thus favors the catalysis of syndiotacticpolyolefins. The syndiotactic synthesis effects could also be enhanced by variations in the ligandsubstituents. From energy considerations, we can conclude that it is more favorable for the methylgroup to occupy the trans-O position to form a complex than to occupy the trans-N position. Frombond length considerations, it is also more favoured for ethene to occupy the trans-O position thanto occupy the trans-N position. 展开更多
关键词 nickel catalyst density functional method POLYOLEFIN MECHANISM
原文传递
Selective hydroconversion of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan using carbon nanotubes-supported nickel catalysts 被引量:1
12
作者 Zexing Huang Xiaoao Sun +4 位作者 Wenguang Zhao Xiaoting Zhu Zhijuan Zeng Qiong Xu Xianxiang Liu 《Carbon Resources Conversion》 2022年第4期289-298,共10页
2,5-Bis(hydroxymethyl)furan(BHMF)is a high-value,bio-based,rigid diol that resembles aromatic monomers for the production of different polyesters.In this work,a carbon nanotubes(CNTs)-supported nickel catalyst(Ni/CNTs... 2,5-Bis(hydroxymethyl)furan(BHMF)is a high-value,bio-based,rigid diol that resembles aromatic monomers for the production of different polyesters.In this work,a carbon nanotubes(CNTs)-supported nickel catalyst(Ni/CNTs)was prepared and used for the selective hydrogenation of 5-hydroxymethylfurfural(HMF)to BHMF at low hydrogen pressure.The prepared catalyst was analyzed by nitrogen adsorption-desorption isotherms,X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).According to kinetic studies,the rate constant for BHMF formation is significantly larger than that for the formation of the byproduct,5-methyl furfural(MF).At optimal reaction conditions,conversion and selectivity rates of HMF and BHMF were 99.8%and 95.0%,respectively.The mechanistic study indicated the coexistence of Ni0 and Ni2+species on the catalyst surface affects the catalytic performance.A possible mechanism was proposed to describe the synergetic effects of Ni0 and Ni2+.Furthermore,the catalyst can be easily separated from the reaction mixture for recycling. 展开更多
关键词 Biomass transformation 5-HYDROXYMETHYLFURFURAL Selective hydrogenation nickel catalyst 2 5-Bis(hydroxymethyl)furan
原文传递
Influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction
13
作者 M.A.Goula N.D.Charisiou +1 位作者 K.N.Papageridis G.Siakavelas 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1949-1965,共17页
The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were ... The influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction was studied.A series of Al2O3-supported Ni catalysts were synthesized,with nickel loading of 8 wt%,using the incipient wetness,wet impregnation,and modified equilibrium deposition filtration methods.The catalysts' surface and bulk properties were determined by inductively coupled plasma(ICP),N2 adsorption-desorption isotherms(BET),X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and temperature-programmed reduction(TPR).Used catalysts were characterized by techniques such as elemental analysis and SEM in order to determine the level of carbon that was deposited and catalyst morphology.The results indicated that the synthesis method affected the textural,structural and surface properties of the catalysts,differentiating the dispersion and the kind of nickel species on alumina's surface.The formation of nickel aluminate phases was confirmed by the XRD and TPR analysis and the β-peak of the Ni/Al-edf catalyst was higher than in the other two catalysts,indicating that the nickel aluminate species of this catalyst were more reducible.Both Ni/Al-wet and Ni/Al-edf catalysts showed increasing CO2 selectivities and approximately constant CO selectivities for temperatures above 550℃,indicating that these catalysts successfully catalyze the water gas shift reaction.It was also confirmed that the Ni/Al-edf catalyst had the highest values for glycerol to gaseous products conversion,hydrogen yield,allyl alcohol,acetaldehyde,and acetic acid selectivities at 650℃ and the lowest carbon deposition of the catalysts tested.The correlation of the catalysts' structural properties,dispersion and reducibility with catalytic performance reveals that the EDF method can provide catalysts with higher specific surface area and active phase's dispersion,that are easier to reduce,more active and selective to hydrogen production,and more resistant to carbon deposition. 展开更多
关键词 GLYCEROL HYDROGEN Steam reforming Supported nickel catalyst Catalyst prep aration
下载PDF
CO_2 Reforming of CH_4 over Nickel and Cobalt Catalysts Prepared from La-Based Perovskite Precursors
14
作者 Jianjun Guo, Hui Lou, Yinghong Zhu, Xiaoming ZhengInstitute of Catalysis, Zhejiang University, Hangzhou 310028, China 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2003年第1期17-22,共6页
Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts wer... Four perovskite-type complex oxides (LaNiO_3, La_2NiO_4, LaCoO_3 andLa_2CoO_4) were successfully prepared using two sol-gel methods, the Pechini method (PC) and thecitric acid complexing method (CC). The catalysts were characterized by XRD and TPR. Afterreduction, the activity of the catalysts in the CO_2 reforming of methane was tested. Ni-basedcatalysts from La_2NiO_4 precursors were the most active and stable catalyst after calcination above850 ℃, which gave a methane conversion of 0.025 mmol/(g·s) for those prepared by the PC methodand 0.020 mmol/(g·s) by the CC method. It was proposed that the well-defined structure and lowerreducibility is responsible for the unusual catalytic behavior observed over the pre-reducedLa2NiO_4 catalyst. 展开更多
关键词 carbon dioxide reforming METHANE SYNGAS perovskite oxide sol-gelpreparation nickel catalyst cobalt catalyst
下载PDF
Macrocyclic Binuclearα-Diimine Nickel Catalysts for Ethylene Polymerization
15
作者 YANG Jingshuang ZHANG Yuxing JIAN Zhongbao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第5期797-802,共6页
Polyolefins are globally important plastics.Molecular weight and molecular weight distribution are two key parameters for determining the properties of polyolefin materials.In this contribution,we develop a strategy f... Polyolefins are globally important plastics.Molecular weight and molecular weight distribution are two key parameters for determining the properties of polyolefin materials.In this contribution,we develop a strategy for combining the macrocyclic framework and the binuclear effect into the benchmarkα-diimine late transition metal catalysts,and thus macrocyclic binuclearα-diimine nickel catalysts(Ni_(2)-Me and Ni_(2)-iPr)are prepared.Compared to the classical Brookhart's acyclic mononuclearα-diimine nickel analogues(Ni_(1)-Me and Ni_(1)-iPr),these nickel catalysts exhibit enhanced thermostability(up to 110℃)and produce polyethylenes with higher molecular weights(up to 7 times)and lower branching densities(as low as 9 branches/1000C)in methylaluminoxane(MAO)activated ethylene polymerization.This translates into the ability of the catalyst to afford more linear high molecular weight polyethylenes.In particular,bimodal polyethylenes with broad molecular weight distributions(Mw/Mn=8.08-14.66)are generated by the sole catalyst.This work affords diverse polyethylenes. 展开更多
关键词 POLYOLEFIN nickel catalyst Diimine ligand Macrocyclic binuclear strategy Bimodal polyethylene
原文传递
Silica Modulation of Raney Nickel Catalysts for Selective Hydrogenation
16
作者 Yating Lv Hai Wang +3 位作者 Huixin Wu Qingsong Luo Liang Wang Feng-Shou Xiao 《Precision Chemistry》 2023年第5期309-315,共7页
Selective hydrogenation over earth-abundant metal catalysts is challenging but particularly valuable for practical applications in heterogeneous catalysis.Herein,we demonstrate that the catalytic selectivity of the co... Selective hydrogenation over earth-abundant metal catalysts is challenging but particularly valuable for practical applications in heterogeneous catalysis.Herein,we demonstrate that the catalytic selectivity of the commercial Raney nickel catalyst can be greatly tuned by modulation of the nickel surface by silica.Using quinoline hydrogenation as a model,we show that the silica-modified Raney nickel catalysts exhibit good activity,excellent selectivity,and long stability,whereas the undesired over-hydrogenation reactions are effectively hindered.In contrast,the pristine Raney nickel catalyst shows inferior selectivity for the targeted product.Mechanistic studies confirm a positive role of silica to facilitate the desorption of 1,2,3,4-tetrahydroquinoline from the catalyst surface,thus enhancing the product selectivity. 展开更多
关键词 selective hydrogenation QUINOLINE 1 2 3 4-tetrahydroquinoline commercial Raney nickel catalyst silica modulation product desorption
原文传递
Remote electron effects andπ-πinteractions ofα-diimine nickel complexes
17
作者 Yizhan Wang Hailong He Dan Peng 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第9期17-22,68,共7页
The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nick... The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nickel-based catalysts have great application prospects in the industrialization process of olefin coordination polymerization.In this work,various N-aryl substituents with different electronic effects were synthesized and introduced intoα-diimine ligands.The aspreparedα-diimine nickel catalysts showed high polymerization activity(0.9×10^(7)–3.0×10^(7)g·mol^(−1)·h^(−1))in ethylene polymerization,generating polyethylene products with adjustable molecular weights(Mn values:7.4×10^(4)–146.9×10^(4)g·mol^(−1))and branching densities(31/1000 C–68/1000 C).The resulting polyethylene products showed excellent mechanical properties,with high tensile strength(up to 25.0 MPa)and high strain at break values(up to 3890%).The copolymerization of ethylene and polar monomers can also be achieved by these nicekel complexes,ultimately preparing functionalized polyolefins. 展开更多
关键词 α-diimine nickel catalyst ethylene polymerization π-πinteraction effect electronic effect polar monomer
下载PDF
Research Progress of Nickel Iron Bimetallic Series Electrocatalytic Materials
18
作者 Yan Qiu Wenjing Ma 《Expert Review of Chinese Chemical》 2024年第2期23-26,共4页
Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the mo... Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the most promising solutions for providing hydrogen fuel.Nickel iron bimetallic electrocatalysts have abundant sources,low cost,clean and pollution-free properties,and strong catalytic performance,This article mainly reviews the development and research of bimetallic nickel iron oxides and nickel iron alloys in recent years,and explores their synthesis methods,properties,and stability in depth. 展开更多
关键词 ELECTROCHEMISTRY bimetallic nickel ferroelectric catalyst hydrogen evolution reaction oxygen evolution reaction
下载PDF
Ni/Al_2O_3 catalysts for syngas methanation: Effect of Mn promoter 被引量:17
19
作者 Anmin Zhao Weiyong Ying +2 位作者 Haitao Zhang Hongfang Ma Dingye Fang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第2期170-177,共8页
Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their ca... Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their catalytic activity towards syngas methanation reaction was also investigated using a fixed-bed integral reactor. It was demonstrated that the addition of manganese to Ni/Al2O3 catalysts can increase the catalyst surface area and average pore volume, but decrease NiO crystallite size, leading to higher activity and stability. The effects of reaction temperature, pressure and weight hourly space velocity (WHSV) on carbon oxides conversion and CH4 formation rate were also studied. High carbon oxides conversion, CH4 selectivity and formation rate were achieved at the reaction temperature range of 280 300℃. 展开更多
关键词 manganese promotion nickel catalysts syngas methanation
下载PDF
Methane Steam Reforming on Supported Nickel, Effect of Nickel Content for Product Hydrogen 被引量:1
20
作者 Akila Belhadi Souhila Boumaza +2 位作者 Amar Djadoun Mohamed Trari Ouiza Cherifi 《Open Journal of Physical Chemistry》 2016年第2期34-41,共8页
The steam reforming of methane over NiO/ZnO mixed oxides with different nickel contents was studied. Solids to x% Ni/ZnO (x = 4 and 10%) were deposited on ZnO by impregnation from nickel nitrate solution;after vaporiz... The steam reforming of methane over NiO/ZnO mixed oxides with different nickel contents was studied. Solids to x% Ni/ZnO (x = 4 and 10%) were deposited on ZnO by impregnation from nickel nitrate solution;after vaporization the solid is calcined at 500°C for 6 h. The catalysts were characterized by X-ray diffraction (XRD) and BET method, scanning electron microscopy (SEM) and temperature programmed reduction (TPR). The XRD patterns revealed the NiO phase for all calcined catalysts. The chemical analysis confirmed the theoretical values of nickel. The catalysts were pre-treated under hydrogen at 500°C in situ, overnight before testing for the steam reforming of methane reaction (CH<sub>4</sub>/H<sub>2</sub>O/Ar = 10/10/80) in the temperature range (475°C - 650°C) under atmospheric pressure. The activities of both catalysts were investigated in a fixed-bed reactor for the Methane Steam Reforming (MSR) reaction. Globally, it was shown that the catalyst 10% nickel content has an important effect on the catalytic performances of solids i.e. the better results of hydrogen production were obtained with 10% wt. Ni/ZnO (28 ′ 10-<sup>3</sup> mol/g catalyst). 展开更多
关键词 nickel catalysts ZNO Methane Steam Reforming HYDROGEN
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部