A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The ...A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The results demonstrated that the maximum amount of intermetallic eutectics (i.e., 41.5%, mass fraction) has been formed in 9.8% (Ti+Al). It is predicted that high level of intermetallics formed in the 3GSA-HNM-1 (γ-9.8%(Ti+Al)) deteriorates its castability. The type and morphology of eutectic intermetallics change and the amount considerably diminishes by decreasing Ti+Al in 3GSA-HNM-2 (γ-7.6%(Ti+Al), 1.5% Nb). Thus, it is predicted that the castability for the 3GSA-HNM-2 improves. The amount of Laves intermetallics shows an ascending behavior again, however, with less intensity by increasing the Nb content in the 3GSA-HNM-3 (γ-5.7%(Ti+Al), 2.9% Nb). It can be concluded that for 3GSA-HNM-3 with composition of γ-5.7%(Ti+Al) and 2.9% Nb, the optimized castability can be anticipated, because the minimum amount of eutectic intermetallics (i.e., 4.7%) is formed.展开更多
The use of high-temperature materials is especially important in power station construction, heating systems engineering, furnace industry, chemical and petrochemical industry, waste incineration plants, coal gasifica...The use of high-temperature materials is especially important in power station construction, heating systems engineering, furnace industry, chemical and petrochemical industry, waste incineration plants, coal gasification plants and for flying gas turbines in civil and military aircrafts and helicopters. Particularly in recent years, the development of new processes and the drive to improve the economics of existing processes have increased the requirements significantly so that it is necessary to change from well-proven materials to new alloys. Hitherto, heat resistant ferritic steels sufficed in conventional power station constructions for temperatures up to 550℃ newly developed ferritic/martensitic steels provide sufficient strength up to about 600 - 620℃. In new processes, e.g. fluidized-bed combustion of coal, process temperatures up to 900℃ occur. However, this is not the upper limit, since in combustion engines, e.g. gas turbines. Material temperatures up to 1100℃ are reached locally. Similar development trends can also be identified in the petrochemical industry and in the heat treatment and furnace engineering. The advance to ever higher material temperatures now not only has the consequence of having to use materials with enhanced high-strength properties, considerable attention now also has to be given to their chemical stability in corrosive media. Therefore not only examples of the use of high-temperature alloys for practical applications will be given but also be contributed to some general rules for material selection with regard to their high-temperature strength and corrosion resistance.展开更多
The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results th...The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results that show improved resistance to sulfidation by niobium. Research results from a current program on the role of niobium in the Russian powder metallurgy alloy EP741NP are presented. Future research plans on the role of niobium in superalloys are also discussed.展开更多
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou...The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.展开更多
The advanced ultra-supercritical power plants of the future will utilize steam pressures and temperatures that are too high for traditional ferritic steels,thus requiring austenitic materials.Older nickel-base superal...The advanced ultra-supercritical power plants of the future will utilize steam pressures and temperatures that are too high for traditional ferritic steels,thus requiring austenitic materials.Older nickel-base superalloys such as 263 and 617 were initially evaluated under the European THERMIE project beginning in the 1990s.An entirely new age-hardened alloy 740 which possesses exceptional fireside corrosion resistance and creep strength was also developed for boiler tubing capable of serving at 700C.Subsequently,interest in the USA considered other product forms such as steam header piping and steam turbine forgings for service as high as 760C.A more stable and weldable alloy version now called 740H was developed to meet these more demanding conditions.This paper summarizes the current status of work on alloys 740 and 740H.展开更多
The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the ch...The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the chemical composition of the passive film formed on G3 alloy was detected by X-ray photoelectron spectroscopy (XPS). The results show that passive film on G3 alloy had better protection than that on G30 alloy. The transfer resistance, film resistance and diffusion resistance of the passive films on both alloys increased with increasing formation potential, prolonging formation time, increasing pH value, decreasing formation temperature, and decreasing chloride and sulphide ions concentration. Mott-Schottky plot reveals that the passive films on the two alloys show a p-n semi-conductive character. XPS analysis indicates that the passive film on G3 alloy was composed of an inner Cr oxide and an outer Fe, Mo/Ni oxides.展开更多
The sulfide stress corrosion cracking( SSC) performance of G3 and 028 nickel-based alloys w as studied using slow strain rate test( SSRT) and the four-point bend( FPB) test under simulated dow nhole conditions. ...The sulfide stress corrosion cracking( SSC) performance of G3 and 028 nickel-based alloys w as studied using slow strain rate test( SSRT) and the four-point bend( FPB) test under simulated dow nhole conditions. The effect of high temperature,high H2 S / CO2 partial pressure,and the presence of sulfur on SSC susceptibility w as investigated. The G3 alloy w as found to have a higher SSC resistance than the 028 alloy. Presence of sulfur and temperature bear a strong influence on the SSC performance of the metals,particularly on the 028 alloy. The applicability of 028 and G3 alloys may be expanded and both could safely be used beyond the limits set by the ISO15156-3 standard.展开更多
Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Eff...Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results shaw that the thickness of interface reaction layer of the nickel- based alloy is 14. 3 μm, which is only 4. 33% of base material. The weld is made up of two phases, α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184. 9 MPa.展开更多
In order to obtain good understanding of complicated beam propagation behaviors in nickel-based alloy weldments , ray tracing simulation is established to predict the ultrasonic beam path in a special welded structure...In order to obtain good understanding of complicated beam propagation behaviors in nickel-based alloy weldments , ray tracing simulation is established to predict the ultrasonic beam path in a special welded structure of dissimilar steels. Also experimental examinations are carried out to measure the ultrasonic beam paths in the weldment. Then comparisons of the modeling predictions with experimental results are presented to reveal the complicated beam propagation behaviors.展开更多
Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These a...Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These applications included combustor systems, casings and liners, transition and exhaust ducting, afterburners, and thrust reversere. Light weight components and sub-assemblies call for alloy sheet with high levels of stength and oxidation resistance. Complex component design calls for excellent ductility and ease of fabrication.The wide range of nickel alloy sheet alloys presently used in aircraft and land-based gas turbines is briefly described and typical properties presented. New sheet alloy developments, involving INCONEL ̄* alloys 625LCF, 718SPF and MA754, are presented including the process routes involved and material properties.展开更多
In order to understand the stress corrosion behavior of super-high strength aluminum alloys by spray forming, different aluminum alloys by different heat treatment was made. The results showed that the alloy with peak...In order to understand the stress corrosion behavior of super-high strength aluminum alloys by spray forming, different aluminum alloys by different heat treatment was made. The results showed that the alloy with peak aging has the most sensitive stress corrosion cracking, the crack can even be seen using eyes;the alloys with two step aging were better than one step aging alloys, the alloys has not been found stress corrosion cracking.展开更多
Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to ...Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×10^(17) ions/cm^(2) at room temperature.Throughout the cross-section transmission electron microscopy(TEM)image,numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result.Post-implantation annealing was conducted at 700℃for 2 h to investigate the bubble evolution.The long-range migration of helium bubbles occurred during the annealing process,which makes the bubbles of the peak region transform into a faceted shape as well.Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence(MC)mechanism.With the diffusion of nickel atoms slowed down by the alloy elements,the migration and coalescence of bubbles are suppressed in alloy 617,leading to a better helium irradiation resistance.展开更多
This paper introduces a thick 690 nickel-based alloy plate produced by the former Baosteel Special Steel Co.,Ltd.used as the steam-generator divider plate in the pressurized water reactor nuclear power plant.According...This paper introduces a thick 690 nickel-based alloy plate produced by the former Baosteel Special Steel Co.,Ltd.used as the steam-generator divider plate in the pressurized water reactor nuclear power plant.According to the product characteristics and design requirements of the thick nickel-based alloy plate,multidimensional sampling and testing were conducted to investigate its microstructure and mechanical properties.The results show that all the property indexes of the thick hot-rolled nickel-based alloy plate meet the design requirements,and there is good uniformity in the microstructure and mechanical properties in different dimensions.These findings indicate that China has mastered the core manufacturing technology of thick nickel-based alloy plates for their use as divider plates in nuclear power steam generators.展开更多
Invar合金是制备精细金属掩模板(Fine Metal Mask,简称FMM)的重要基材,其纯净度直接影响FMM的质量以及有机发光二极管(Organic Light EmittingDiode,简称OLED)技术的发展水平。首先概述了FMM的主要制备技术,介绍了对FMM基材Invar合金的...Invar合金是制备精细金属掩模板(Fine Metal Mask,简称FMM)的重要基材,其纯净度直接影响FMM的质量以及有机发光二极管(Organic Light EmittingDiode,简称OLED)技术的发展水平。首先概述了FMM的主要制备技术,介绍了对FMM基材Invar合金的质量要求,并对国产Invar合金箔和国外进口Invar合金箔内的夹杂物进行了表征分析。结果表明,国产Invar合金箔的纯净度与进口Invar合金箔相比,仍存在很大的差距,主要体现在夹杂物的尺寸和数量等方面。为实现OLED配套产业全国产化,攻克Invar合金的近零夹杂难题,开发新型制备技术是关键突破点。最后详细论述了超重力技术在Invar合金除杂方面的研究成果和电铸Invar合金箔应用的可行性,并指出超重力技术和电铸技术有望解决近零夹杂金属材料的制备难题。展开更多
文摘A quantitative relation between the γ/γ′ and γ/Laves intermetallics was investigated with the change of chemical composition, i.e., Ti, Al and Nb in the third generation of nickel-based superalloys. The results demonstrated that the maximum amount of intermetallic eutectics (i.e., 41.5%, mass fraction) has been formed in 9.8% (Ti+Al). It is predicted that high level of intermetallics formed in the 3GSA-HNM-1 (γ-9.8%(Ti+Al)) deteriorates its castability. The type and morphology of eutectic intermetallics change and the amount considerably diminishes by decreasing Ti+Al in 3GSA-HNM-2 (γ-7.6%(Ti+Al), 1.5% Nb). Thus, it is predicted that the castability for the 3GSA-HNM-2 improves. The amount of Laves intermetallics shows an ascending behavior again, however, with less intensity by increasing the Nb content in the 3GSA-HNM-3 (γ-5.7%(Ti+Al), 2.9% Nb). It can be concluded that for 3GSA-HNM-3 with composition of γ-5.7%(Ti+Al) and 2.9% Nb, the optimized castability can be anticipated, because the minimum amount of eutectic intermetallics (i.e., 4.7%) is formed.
文摘The use of high-temperature materials is especially important in power station construction, heating systems engineering, furnace industry, chemical and petrochemical industry, waste incineration plants, coal gasification plants and for flying gas turbines in civil and military aircrafts and helicopters. Particularly in recent years, the development of new processes and the drive to improve the economics of existing processes have increased the requirements significantly so that it is necessary to change from well-proven materials to new alloys. Hitherto, heat resistant ferritic steels sufficed in conventional power station constructions for temperatures up to 550℃ newly developed ferritic/martensitic steels provide sufficient strength up to about 600 - 620℃. In new processes, e.g. fluidized-bed combustion of coal, process temperatures up to 900℃ occur. However, this is not the upper limit, since in combustion engines, e.g. gas turbines. Material temperatures up to 1100℃ are reached locally. Similar development trends can also be identified in the petrochemical industry and in the heat treatment and furnace engineering. The advance to ever higher material temperatures now not only has the consequence of having to use materials with enhanced high-strength properties, considerable attention now also has to be given to their chemical stability in corrosive media. Therefore not only examples of the use of high-temperature alloys for practical applications will be given but also be contributed to some general rules for material selection with regard to their high-temperature strength and corrosion resistance.
文摘The role of niobium in nickel-based superalloys is reviewed. The importance of niobium as a strengthener is discussed. New developments in nickel-based superalloys are also briefly mentioned, including some results that show improved resistance to sulfidation by niobium. Research results from a current program on the role of niobium in the Russian powder metallurgy alloy EP741NP are presented. Future research plans on the role of niobium in superalloys are also discussed.
基金supported by the National Natural Science Foundation of China(Nos.12022515 and 11975304)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.Y202063)。
文摘The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.
文摘The advanced ultra-supercritical power plants of the future will utilize steam pressures and temperatures that are too high for traditional ferritic steels,thus requiring austenitic materials.Older nickel-base superalloys such as 263 and 617 were initially evaluated under the European THERMIE project beginning in the 1990s.An entirely new age-hardened alloy 740 which possesses exceptional fireside corrosion resistance and creep strength was also developed for boiler tubing capable of serving at 700C.Subsequently,interest in the USA considered other product forms such as steam header piping and steam turbine forgings for service as high as 760C.A more stable and weldable alloy version now called 740H was developed to meet these more demanding conditions.This paper summarizes the current status of work on alloys 740 and 740H.
基金Supported by the National Natural Science Foundation of China(Nos.51075228 50721004)
文摘The electronic properties of passive films formed on G3 and G30 alloys in bicarbonate/carbonate buffer solution were comparatively studied by electrochemical impedance spectra(EIS) and Mott-Schottky analysis, the chemical composition of the passive film formed on G3 alloy was detected by X-ray photoelectron spectroscopy (XPS). The results show that passive film on G3 alloy had better protection than that on G30 alloy. The transfer resistance, film resistance and diffusion resistance of the passive films on both alloys increased with increasing formation potential, prolonging formation time, increasing pH value, decreasing formation temperature, and decreasing chloride and sulphide ions concentration. Mott-Schottky plot reveals that the passive films on the two alloys show a p-n semi-conductive character. XPS analysis indicates that the passive film on G3 alloy was composed of an inner Cr oxide and an outer Fe, Mo/Ni oxides.
文摘The sulfide stress corrosion cracking( SSC) performance of G3 and 028 nickel-based alloys w as studied using slow strain rate test( SSRT) and the four-point bend( FPB) test under simulated dow nhole conditions. The effect of high temperature,high H2 S / CO2 partial pressure,and the presence of sulfur on SSC susceptibility w as investigated. The G3 alloy w as found to have a higher SSC resistance than the 028 alloy. Presence of sulfur and temperature bear a strong influence on the SSC performance of the metals,particularly on the 028 alloy. The applicability of 028 and G3 alloys may be expanded and both could safely be used beyond the limits set by the ISO15156-3 standard.
文摘Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results shaw that the thickness of interface reaction layer of the nickel- based alloy is 14. 3 μm, which is only 4. 33% of base material. The weld is made up of two phases, α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184. 9 MPa.
基金supported by National Natural Science Foundation of China (Grant No. 50775054)International Joint Research Program of China (Grant No. 2007DFR70070)
文摘In order to obtain good understanding of complicated beam propagation behaviors in nickel-based alloy weldments , ray tracing simulation is established to predict the ultrasonic beam path in a special welded structure of dissimilar steels. Also experimental examinations are carried out to measure the ultrasonic beam paths in the weldment. Then comparisons of the modeling predictions with experimental results are presented to reveal the complicated beam propagation behaviors.
文摘Many gas turbine components are made from nickel alloy sheet. Most are used for directing or containing gases at high temperatures and pressures where metal temperatures can be as high as 1090℃ (2000°F). These applications included combustor systems, casings and liners, transition and exhaust ducting, afterburners, and thrust reversere. Light weight components and sub-assemblies call for alloy sheet with high levels of stength and oxidation resistance. Complex component design calls for excellent ductility and ease of fabrication.The wide range of nickel alloy sheet alloys presently used in aircraft and land-based gas turbines is briefly described and typical properties presented. New sheet alloy developments, involving INCONEL ̄* alloys 625LCF, 718SPF and MA754, are presented including the process routes involved and material properties.
文摘In order to understand the stress corrosion behavior of super-high strength aluminum alloys by spray forming, different aluminum alloys by different heat treatment was made. The results showed that the alloy with peak aging has the most sensitive stress corrosion cracking, the crack can even be seen using eyes;the alloys with two step aging were better than one step aging alloys, the alloys has not been found stress corrosion cracking.
基金Project supported by the Special Funds for the Key Research and Development Program of the Ministry of Science and Technology of China(Grant Nos.2017YFB0702201 and 2020YFB1901800)the National Natural Science Foundation of China(Grant Nos.11975135 and 12005017).
文摘Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×10^(17) ions/cm^(2) at room temperature.Throughout the cross-section transmission electron microscopy(TEM)image,numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result.Post-implantation annealing was conducted at 700℃for 2 h to investigate the bubble evolution.The long-range migration of helium bubbles occurred during the annealing process,which makes the bubbles of the peak region transform into a faceted shape as well.Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence(MC)mechanism.With the diffusion of nickel atoms slowed down by the alloy elements,the migration and coalescence of bubbles are suppressed in alloy 617,leading to a better helium irradiation resistance.
基金sponsored by Special Fund for Indus-trial Transformation and Upgrading in Shanghai(No.GYQJ-2018-2-03)Program of Shanghai Academ-ic/Technology Research Leader(No.17XD1420200).
文摘This paper introduces a thick 690 nickel-based alloy plate produced by the former Baosteel Special Steel Co.,Ltd.used as the steam-generator divider plate in the pressurized water reactor nuclear power plant.According to the product characteristics and design requirements of the thick nickel-based alloy plate,multidimensional sampling and testing were conducted to investigate its microstructure and mechanical properties.The results show that all the property indexes of the thick hot-rolled nickel-based alloy plate meet the design requirements,and there is good uniformity in the microstructure and mechanical properties in different dimensions.These findings indicate that China has mastered the core manufacturing technology of thick nickel-based alloy plates for their use as divider plates in nuclear power steam generators.
文摘Invar合金是制备精细金属掩模板(Fine Metal Mask,简称FMM)的重要基材,其纯净度直接影响FMM的质量以及有机发光二极管(Organic Light EmittingDiode,简称OLED)技术的发展水平。首先概述了FMM的主要制备技术,介绍了对FMM基材Invar合金的质量要求,并对国产Invar合金箔和国外进口Invar合金箔内的夹杂物进行了表征分析。结果表明,国产Invar合金箔的纯净度与进口Invar合金箔相比,仍存在很大的差距,主要体现在夹杂物的尺寸和数量等方面。为实现OLED配套产业全国产化,攻克Invar合金的近零夹杂难题,开发新型制备技术是关键突破点。最后详细论述了超重力技术在Invar合金除杂方面的研究成果和电铸Invar合金箔应用的可行性,并指出超重力技术和电铸技术有望解决近零夹杂金属材料的制备难题。