期刊文献+
共找到5,112篇文章
< 1 2 250 >
每页显示 20 50 100
Magnesium alloys as alternative anode materials for rechargeable magnesium-ion batteries:Review on the alloying phase and reaction mechanisms
1
作者 Dedy Setiawan Hyeonjun Lee +6 位作者 Jangwook Pyun Amey Nimkar Netanel Shpigel Daniel Sharon Seung-Tae Hong Doron Aurbach Munseok S.Chae 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3476-3490,共15页
Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electro... Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials.While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition,their practical application is hindered by challenges such as sluggish Mg^(2+)ion diffusion and electrolyte compatibility.Alloy-type anodes that incorporate groups XIII,XIV,and XV elements have the potential to overcome these limitations.We review various Mg alloys,emphasizing their alloying/dealloying reaction mechanisms,their theoretical capacities,and the practical aspects of MIBs.Furthermore,we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes.Emphasis is placed on overcoming current limitations through innovative materials and structural engineering.This review concludes with perspectives on future research directions aimed at enhancing the performance and commercial viability of Mg alloy anodes and contributing to the development of high-capacity,safe,and cost-effective energy storage systems. 展开更多
关键词 Magnesium-ion battery Anode materials Magnesium alloy Electrochemical alloying
下载PDF
Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials 被引量:8
2
作者 吴春萍 易丹青 +2 位作者 翁桅 李素华 周孑民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期185-195,共11页
Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SE... Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SEM) and a 3D optical profiler(3DOP). The results indicated that 3DOP could supply clearer and more detailed arc erosion morphology information. Arc erosion resistance of Ag/SnO_2(10) electrical contact material was the best and that of Ag/CuO(10) was the worst. Arc erosion morphology of Ag/MeO(10) electrical contact materials mainly included three different types. Arc erosion morphologies of Ag/ZnO(10) and Ag/SnO_2(10) electrical contact materials were mainly liquid splash and evaporation, and those of Ag/CuO(10) and Ag/CdO(10) were mainly material transfer from anode to cathode. Arc erosion morphology of Ag/SnO_2(6)In_2O_3(4) electrical contact materials included both liquid splash, evaporation and material transfer. In addition, the formation process and mechanism on arc erosion morphology of Ag/MeO(10) electrical contact materials were discussed. 展开更多
关键词 Ag/MeO electrical contact material alloy component arc erosion morphology three-dimensional optical profiler
下载PDF
Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys 被引量:9
3
作者 Li Jiang Xiang-Xi Ye +1 位作者 De-Jun Wang Zhi-Jun Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第1期57-71,共15页
From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt ... From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials. 展开更多
关键词 Molten salt reactor alloy materials Synchrotron radiation Shanghai Synchrotron Radiation Facility Molten salt corrosion Tellurium corrosion
下载PDF
A review of classical hydrogen isotopes storage materials
4
作者 Yang Liu Zhiyi Yang +6 位作者 Panpan Zhou Xuezhang Xiao Jiacheng Qi Jiapeng Bi Xu Huang Huaqin Kou Lixin Chen 《Materials Reports(Energy)》 EI 2024年第1期23-42,共20页
Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactiv... Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactive tritium.Commonly used HSAs in the hydrogen isotopes field are Zr2M(M=Co,Ni,Fe)alloys,metallic Pd,depleted U,and ZrCo alloy.Specifically,Zr2M(M=Co,Ni,Fe)alloys are considered promising tritium-getter materials,and metallic Pd is utilized to separate and purify hydrogen isotopes.Furthermore,depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes.Notably,all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions.In this review,we present a comprehensive overview of the reported modification methods applied to the above alloys.Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures.Besides,microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics.The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance.Moreover,the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability.Overall,the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research. 展开更多
关键词 Hydrogen isotopes storage alloys alloyING Microstructural modification Surface modification Composite materials
下载PDF
Research on arc erosion of silver-based alloy contact materials under low voltage,resistive load and small current at 400 Hz and 50 Hz 被引量:1
5
作者 Jing Li1,2,Zhi-ying Ma11. School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049 2. School of Electrical Information,Hunan Institute of Engineering,Xiangtan 411101,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第3期149-154,共6页
By using a self-developed IF power and a ASTM contact material experimental system of small-capacity and variable frequency,the value of arcing characteristics and the welding force of the silver-based contact materia... By using a self-developed IF power and a ASTM contact material experimental system of small-capacity and variable frequency,the value of arcing characteristics and the welding force of the silver-based contact material are acquired under low voltage,resistive load and small current at 400 Hz and 50 Hz. By means of an electricity-ray analytical balance,SEM and EDAX,the weighing values of the contact materials and the changes of AgCdO,AgNi,AgC and AgW contact material surface profile and micro-area constituent are obtained and analyzed. The arc erosion causes of silver-based alloy contact materials at 400 Hz and 50 Hz are also discussed. 展开更多
关键词 silver-based alloy low voltage 400 Hz 50 Hz contact material arc erosion
下载PDF
Multirange Fractals in Materials: Applications to Fracture and Mechanical Alloying under Ball Milling 被引量:1
6
作者 Chiwei LUNG(International Centre for Materials Physics, Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第4期255-259,共5页
A new model of multirange fractals is proposed to explain the experimental results observed on the fractal dimensions of the fractured surfaces in materials. A new explanation to the Williford's multifractal curve... A new model of multirange fractals is proposed to explain the experimental results observed on the fractal dimensions of the fractured surfaces in materials. A new explanation to the Williford's multifractal curve on the relationship of fractal dimension with fracture properties in materials has been given. It shows the importance of fractorizing out the effect of fractal structure from other physical causes and separating the appropriate range of scale from multirange fractals. Mechanical alloying process under ball milling as a non-equilibrium dynamical system has been also analyzed. 展开更多
关键词 BALL Applications to Fracture and Mechanical alloying under Ball Milling Multirange Fractals in materials
下载PDF
Thermodynamic Analysis on Interaction between Molten Ti Alloys and Oxide Molding Materials 被引量:1
7
作者 Hongsheng DING Jun JIA Jingiie GUO and Yanqing SU National Key Laboratory of Precision Hot Processing of Metals, Harbin 150001, China HengZhi FU and Jinshan LI State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’ 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期99-100,共2页
A thermodynamic model has been built up for the interactions between molten Ti alloys and oxide molding materials in the way of decomposition and solution of molding materials, then the influences on the reaction free... A thermodynamic model has been built up for the interactions between molten Ti alloys and oxide molding materials in the way of decomposition and solution of molding materials, then the influences on the reaction free energy changes have been calculated and discussed. 展开更多
关键词 TI Thermodynamic Analysis on Interaction between Molten Ti alloys and Oxide Molding materials
下载PDF
High Temperature Mechanical Properties of Ni-Al-Cr Based Alloys for Advanced Die-Materials Applications
8
作者 W.Y.Kim H.S.Kim +1 位作者 Y.G.Yoo I.D.Yeo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第3期305-308,共4页
In this study, we report on advanced Ni3Al based high temperature structural alloys with Zr and B addition in order to apply in the fields of die-casting and high temperature press forming as die materials. Microstruc... In this study, we report on advanced Ni3Al based high temperature structural alloys with Zr and B addition in order to apply in the fields of die-casting and high temperature press forming as die materials. Microstructures and mechanical properties of Ni3Al based intermetallic alloys produced by vacuum arc melting were investigated in terms of phase analysis by using a scanning electron microscope (SEM) equipped with an X-ray energy dispersive spectrometer (EDS), an X-ray diffractometer (XRD) and tensile test. The duplex microstructural feature consisting of γ' matrix phase and small intermetallic dispersoids was observed to be distributed over the whole microstructure. The ultimate tensile strength of the present alloy was superior to commercial iron-based and Ni-based die-materials especially in the high temperature region. 展开更多
关键词 INTERMETALLIC Die material alloying effect Mechanical property
下载PDF
Preparation and Characterization of Rare Earth Metal and Alloy Target Materials for Manufacturing Magneto-Optical Disks
9
作者 张志宏 邱巨峰 +1 位作者 马志鸿 于雅樵 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期440-443,共4页
The studies were made on the preparation processes of the rare earth metal and alloy target materials and their characterization. In this work the rare earth metals were prepared by electrolysis of the oxide in molten... The studies were made on the preparation processes of the rare earth metal and alloy target materials and their characterization. In this work the rare earth metals were prepared by electrolysis of the oxide in molten salt for Nd metal and metallothermic reduction of the fluorides for Gd, Tb, Dy metals. After vacuum refining and distillation purification these rare earth metals were used for manufacturing the element targets, mosaic targets and as the starting materials of preparing the rare earth-transition metal (RE-TM) alloy targets. The four kinds of Dy-FeCo, NdDy-FeCo, Tb-FeCo and GdTb-FeCo alloy targets with diameter of 100 mm and thickness of 3 mm were prepared using powder metallurgical technique. The oxygen content and microstructure of the prepared RE-TM cast alloys and sintered targets were analyzed. The features and requirements of the RE-TM alloy sputtering target materials were also discussed. 展开更多
关键词 rare earth metal alloy target material SPUTTERING magneto-optical recording media
下载PDF
Effect of Counterface Materials on Friction and Wear Behavior of Double Glow Glasma Discharge Surface Alloying on Ti22Al25Nb Alloy
10
作者 吴红艳 张平则 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第1期106-110,共5页
Samples of surface chromising layer were prepared by the double glow plasma discharge technique. X-ray diffraction and X-ray photoelectron spectroscopy(XPS) analysis of dif-ferent elements confirmed the formation of... Samples of surface chromising layer were prepared by the double glow plasma discharge technique. X-ray diffraction and X-ray photoelectron spectroscopy(XPS) analysis of dif-ferent elements confirmed the formation of chrome in the layer. Their tribological properties were investigated by pin-on-disk tribometer. Silicon nitride, GCr15, and nickel-based alloy were selected as counterface materials. Results indicated that the lowest friction coefficients and wear rate were ob-tained when substrate and chromising layer against nickel-based alloy, and tribological properties of chromising layer were better than those of substrate. The highest friction and wear rate were samples against silicon nitride alloys. In the case of three rubbing pairs, the unchangeable materials against different hardness counterfaces leaded to different wear mechanisms. Samples against silicon nitride exhibited abrasive mechanism, and when GCr15 and nickel-based alloy were used as counterface, transfer film and glaze layer formed on the contact surface, which played the main role in decreasing friction and wear. 展开更多
关键词 XPS analysis surface alloying friction and wear counterface materials
下载PDF
Hydriding properties of uranium alloys for purposes of searching for new hydrogen storage materials 被引量:1
11
作者 Michio Yamawaki Takuya Yamamoto +3 位作者 Yuji Arita Fumihiro Nakamori Kazuhito Ohsawa Kenji Konashi 《Nuclear Science and Techniques》 SCIE CAS CSCD 2015年第1期121-126,共6页
Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to... Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to alleviate the risk, as well as to reduce the cost incurred by globally-stored large amounts of depleted uranium left after uranium enrichment. Various uranium alloys have been examined in terms of hydrogen absorptiondesorption properties, among which UNi Al intermetallic compound showed promising characteristics, such as lower absorption-desorption temperatures and better anti-powdering strength. First principle calculation has been carried out on UNi Al hydride to predict the change of crystal structure and the lattice constant with increasing hydrogen content, which showed this calculation to be promising in predicting candidates for good hydrogen absorbers. 展开更多
关键词 氢化性能 储氢材料 铀合金 第一原理计算 金属间化合物 能源系统 解吸温度 晶格常数
下载PDF
Integrated Computational Materials Engineering for the Development and Design of High Modulus Al Alloys
12
作者 Chengpeng Xue Xinghai Yang +1 位作者 Shuo Wang Junsheng Wang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期443-462,共20页
Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys... Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys design and development,which enables the design and development of Al alloys to upgrade from traditional empirical to the integration of compositionprocess-structure-mechanical property,thus greatly accelerating its development speed and reducing its development cost.This study combines calculation of phase diagram(CALPHAD),Finite element calculations,first principle calculations,and microstructure characterization methods to predict and regulate the formation and structure of composite precipitates from the design of highmodulus Al alloy compositions and optimize the casting process parameters to inhibit the formation of micropore defects in the casting process,and the final tensile strength of Al alloys reaches420 MPa and Young's modulus reaches more than 88 GPa,which achieves the design goal of the high strength and modulus Al alloys,and establishes a new mode of the design and development of the strength/modulus Al alloys. 展开更多
关键词 integrated computational materials engineering(ICME) high modulus Al alloys
下载PDF
Synthesis of LiCo_xNi_(1-x)O_2 cathode materials from electrolysis Co-Ni alloys
13
作者 叶茂 魏进平 +4 位作者 曹晓燕 翟金玲 王晓宇 孙欣 阎杰 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第4期784-788,共5页
The LiCoxNi1-xO2 (x=0.2, 0.5 and 0.8) cathode materials were synthesized by sintering the mixtures of lithium salt and CoxNi1-x(OH)2 (x=0.2, 0.5 and 0.8) which were achieved from corresponding CoxNi1-x alloys by... The LiCoxNi1-xO2 (x=0.2, 0.5 and 0.8) cathode materials were synthesized by sintering the mixtures of lithium salt and CoxNi1-x(OH)2 (x=0.2, 0.5 and 0.8) which were achieved from corresponding CoxNi1-x alloys by electrolysis technique. The structure and electrochemical characteristics of the obtained LiCoxNi1-xO2 were studied by XRD, SEM, PSCA and charge-discharge cycling test. The results show that the electrochemical capacities of the LiCoxNi1-xO2 (x=0.2, 0.5 and 0.8) materials are improved with the increase of the Ni content. The electrochemical performance of LiCo0.2Ni0.8O2 made in oxygen atmosphere has higher charge-discharge capacity and better cycleability compared with the one made in air atmosphere. 展开更多
关键词 LiCoxNi1-xO2 阴极 合成工艺 电解工艺 蓄电池 合金
下载PDF
Visualization and simulation of plastic material flow in friction stir welding of 2024 aluminium alloy plates 被引量:12
14
作者 武传松 张文斌 +1 位作者 石磊 陈茂爱 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1445-1451,共7页
Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visual... Thin copper sheets as marker material were embedded into weld path of 2024 aluminium alloy plates and their final position after friction stir welding was examined by metallographic techniques. Referring to the visualized material flow patterns, a three-dimensional model was developed to conduct the numerical simulation of the temperature profile and plastic material flow in friction stir welding. The calculated velocity contour of plastic flow in close proximity of the tool is generally consistent with the visualized results. As the tool rotation speed increases at a constant tool travel speed, the material flow near the pin gets stronger. The predicted shape and size of the weld nugget zone match with the experimentally measured ones. 展开更多
关键词 2024 aluminium alloy numerical simulation VISUALIZATION friction stir welding material flow heat transfer
下载PDF
Material driven workability simulation by FEM including 3D processing maps for magnesium alloy 被引量:2
15
作者 刘娟 李居强 +2 位作者 崔振山 欧立安 阮立群 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3011-3019,共9页
The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow inst... The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters. 展开更多
关键词 material driven workability simulation 3D processing maps magnesium alloy hot forging
下载PDF
IMPACT-SLIDING WEAR OF MATERIALS
16
作者 魏勇强 王黎钦 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期251-258,共8页
A simple impact-sliding wear test rig is designed for studying the wear behavior between solid materials on a repetitive normal impact accompanied with the tangential sliding. The test rig consists of a cantilever bea... A simple impact-sliding wear test rig is designed for studying the wear behavior between solid materials on a repetitive normal impact accompanied with the tangential sliding. The test rig consists of a cantilever beam forced by the dynamoelectric vibration exciter and a rotational shaft driven by a spindle. It has a widely adjustable range of testing parameters, including the impact frequency, the impact load and the sliding velocity. The avail- able maximum impact frequency, impact load and sliding velocity are 100 Hz, 200 N and 4.52 m/s, respectively. To evaluate the capability of the test rig, tests are carried out and the impact load is measured. Results show that the test rig has the good repeatability under the same test conditions and the repeatable error is less than 7%. Furthermore, non-destructive examination results by the mass loss method, two-dimensional profilometry and the scanning electron microscopy (SEM) show that the test rig can meet the demands for the impact-sliding wear. 展开更多
关键词 wear of materials impact testing aluminum alloys titanium alloys
下载PDF
Recent progress in high temperature permanent magnetic materials 被引量:22
17
作者 Cheng-Bao Jiang Shi-Zhong An 《Rare Metals》 SCIE EI CAS CSCD 2013年第5期431-440,共10页
Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high tempera... Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high temperature applications, since they have large magnetocrystalline anisotropy field (6-30 T), high Curie temperature (720-920℃), and large energy product (〉200 kJ.m-3) at room temperature. However, the highest service temperature of commercial 2:17 type SmCo magnets is only 300℃, and many efforts have been devoted to develop novel high temperature permanent magnets. This review focuses on the development of three kinds of SmCo based magnets: 2:17 type SmCo magnets, nanocrystalline SmCo magnets, and nanocomposite SmCo magnets. The oxidation protection, including alloying and surface modification, of high temperature permanent magnets is discussed as well. 展开更多
关键词 Magnetic materials Sm-Co alloys Permanent magnets High temperature
下载PDF
Preparation and Arc Breakdown Behavior of Nanocrystalline W-Cu Electrical Contact Materials 被引量:9
18
作者 Wenge CHEN Zhanying KANG Bingjun DING 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第6期875-878,共4页
Nanostructured (NS) W-Cu composite powder was prepared by mechanical alloying (MA), and nanostructured bulk of W-Cu contact material was fabricated by hot pressed sintering in an electrical vacuum furnace. The mic... Nanostructured (NS) W-Cu composite powder was prepared by mechanical alloying (MA), and nanostructured bulk of W-Cu contact material was fabricated by hot pressed sintering in an electrical vacuum furnace. The microstructure, electric conductivity, hardness, breakdown voltage and arcing time of NS W-Cu alloys were measured and compared to conventional W-Cu alloys prepared by powder metallurgy. The results show that microstructural refinement and uniformity can improve the breakdown behavior, the electric arc stability and the arc extinction ability of nanostructured W-Cu contacts materials. Also, the nanostructured W-Cu contact material shows the characteristic of spreading electric arcs, which is of benefit to electric arc erosion. 展开更多
关键词 Nanostructured materials W-Cu alloy Electrical breakdown ARC
下载PDF
A review on anode materials for lithium/sodium-ion batteries 被引量:19
19
作者 Abhimanyu Kumar Prajapati Ashish Bhatnagar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期509-540,I0013,共33页
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed... Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries. 展开更多
关键词 Lithium/Sodium-ion batteries Anode materials Nanomaterials Metal-organic framework Conversion materials Intercalated materials alloying materials
下载PDF
Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials 被引量:23
20
作者 Amelia Yilin Lee Jia An Chee Kai Chua 《Engineering》 SCIE EI 2017年第5期663-674,共12页
The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, se... The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shapesetting) phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles-an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D) printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested. 展开更多
关键词 4D printing Additive manufacturing Shape memory material Smart materials Shape memory alloy Shape memory polymer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部