Recently biospecific affinity chromatography has been widely used for the separation and purification of various enzymes and nucleic acids. In this paper, a series of synthetic reactions of solid-liquid phase were car...Recently biospecific affinity chromatography has been widely used for the separation and purification of various enzymes and nucleic acids. In this paper, a series of synthetic reactions of solid-liquid phase were carried out on silica surface, using a macroporous(30 mu m), microspherical silica (8 mu m) as the matrix and gamma-aminopropyltriethoxysilane as the activating agent, the nicotinamide adenine dinucleotide(NAD) was bonded through its amino groups to the carboxylic groups of linked phospholipid which was bonded covalently on aminated support. The bonded stationary phase has high thermal stability, and could be used to separate of nucleotides with good resolution.展开更多
An NAD analogue, N-(2-thiol-ethyl)-nicotinamide (TENA), was synthesized. TENA was used to modify the Au electrode through self-assembled monolayer.The cyclic voltammetry study of the electrode was carried out. The int...An NAD analogue, N-(2-thiol-ethyl)-nicotinamide (TENA), was synthesized. TENA was used to modify the Au electrode through self-assembled monolayer.The cyclic voltammetry study of the electrode was carried out. The interference of dimerization of the NAD analogues reported in the literature was successfully avoided. The results support a mechanism of an electron transfer followed by chemical reaction during part of the redox process of TENA. Some useful reaction parameters were obtained.展开更多
The redox property of the ultrasmall coinage nanoclusters(with several to tens of Au/Ag atoms)has elucidated the electrontransfer capacity of nanoclusters,has been successfully utilized in a variety of redox conversio...The redox property of the ultrasmall coinage nanoclusters(with several to tens of Au/Ag atoms)has elucidated the electrontransfer capacity of nanoclusters,has been successfully utilized in a variety of redox conversions(such as from CO_(2)to CO).Nevertheless,their biological applications are mainly restricted by the scarcity of atomically precise,water-soluble metal nanoclusters,the limited application(mainly on the decomposition of H_(2)O_(2)in these days).Herein,mercaptosuccinic acid(MSA)protected ultrasmall alloy AuAg nanoclusters were prepared,the main product was determined[Au_(3)Ag_(5)(MSA)_(3)]−by electrospray ionization mass spectrometry(ESI-MS).The clusters can not only mediate the decomposition of H_(2)O_(2)to generate hydroxyl radicals,but is also able to mediate the reduction of nicotinamide adenine dinucleotide(NAD)to its reduced form of NADH.This is the first time that the atomically precise metal nanoclusters were used to mediate the coenzyme reduction.The preliminary mechanistic insights imply the reaction to be driven by the hydrogen bonding between the carboxylic groups(on the surface of MSA)and the amino N–H bonds(on NAD).In this context,the presence of the carboxylic groups,the sub-nanometer size regime(~1 nm),the synergistic effect of the Au-Ag clusters are pre-requisite to the NAD reduction.展开更多
SIRT1(Sirtuin type 1)是依赖NAD+的组蛋白去乙酰化酶,对作用底物组蛋白赖氨酸残基进行去乙酰化修饰而发挥多种生理功能.SIRT1通过增加脂肪分解,减少脂肪堆积;增加糖异生,维持正常血糖水平;增加胰岛素敏感性,改善胰岛素抵抗;抑制蛋白水...SIRT1(Sirtuin type 1)是依赖NAD+的组蛋白去乙酰化酶,对作用底物组蛋白赖氨酸残基进行去乙酰化修饰而发挥多种生理功能.SIRT1通过增加脂肪分解,减少脂肪堆积;增加糖异生,维持正常血糖水平;增加胰岛素敏感性,改善胰岛素抵抗;抑制蛋白水解酶活性,减少骨骼肌质量丢失等多种途径调节机体物质代谢,改善代谢的失衡.因此,提高SIRT1活性已成为治疗多种疾病的方法之一.运动是刺激SIRT1表达的有效因素,小分子多酚类是SIRT1的激活剂,低强度激光照射可改善SIRT1活性,这些方法均已广泛用于多种疾病的防治.展开更多
文摘Recently biospecific affinity chromatography has been widely used for the separation and purification of various enzymes and nucleic acids. In this paper, a series of synthetic reactions of solid-liquid phase were carried out on silica surface, using a macroporous(30 mu m), microspherical silica (8 mu m) as the matrix and gamma-aminopropyltriethoxysilane as the activating agent, the nicotinamide adenine dinucleotide(NAD) was bonded through its amino groups to the carboxylic groups of linked phospholipid which was bonded covalently on aminated support. The bonded stationary phase has high thermal stability, and could be used to separate of nucleotides with good resolution.
文摘An NAD analogue, N-(2-thiol-ethyl)-nicotinamide (TENA), was synthesized. TENA was used to modify the Au electrode through self-assembled monolayer.The cyclic voltammetry study of the electrode was carried out. The interference of dimerization of the NAD analogues reported in the literature was successfully avoided. The results support a mechanism of an electron transfer followed by chemical reaction during part of the redox process of TENA. Some useful reaction parameters were obtained.
基金National Science Foundation of Anhui Province(No.2108085J08)the University Synergy Innovation Program of Anhui Province(No.GXXT-2021-023)the technical support of high-performance computing platform of Anhui University.
文摘The redox property of the ultrasmall coinage nanoclusters(with several to tens of Au/Ag atoms)has elucidated the electrontransfer capacity of nanoclusters,has been successfully utilized in a variety of redox conversions(such as from CO_(2)to CO).Nevertheless,their biological applications are mainly restricted by the scarcity of atomically precise,water-soluble metal nanoclusters,the limited application(mainly on the decomposition of H_(2)O_(2)in these days).Herein,mercaptosuccinic acid(MSA)protected ultrasmall alloy AuAg nanoclusters were prepared,the main product was determined[Au_(3)Ag_(5)(MSA)_(3)]−by electrospray ionization mass spectrometry(ESI-MS).The clusters can not only mediate the decomposition of H_(2)O_(2)to generate hydroxyl radicals,but is also able to mediate the reduction of nicotinamide adenine dinucleotide(NAD)to its reduced form of NADH.This is the first time that the atomically precise metal nanoclusters were used to mediate the coenzyme reduction.The preliminary mechanistic insights imply the reaction to be driven by the hydrogen bonding between the carboxylic groups(on the surface of MSA)and the amino N–H bonds(on NAD).In this context,the presence of the carboxylic groups,the sub-nanometer size regime(~1 nm),the synergistic effect of the Au-Ag clusters are pre-requisite to the NAD reduction.
文摘SIRT1(Sirtuin type 1)是依赖NAD+的组蛋白去乙酰化酶,对作用底物组蛋白赖氨酸残基进行去乙酰化修饰而发挥多种生理功能.SIRT1通过增加脂肪分解,减少脂肪堆积;增加糖异生,维持正常血糖水平;增加胰岛素敏感性,改善胰岛素抵抗;抑制蛋白水解酶活性,减少骨骼肌质量丢失等多种途径调节机体物质代谢,改善代谢的失衡.因此,提高SIRT1活性已成为治疗多种疾病的方法之一.运动是刺激SIRT1表达的有效因素,小分子多酚类是SIRT1的激活剂,低强度激光照射可改善SIRT1活性,这些方法均已广泛用于多种疾病的防治.