An n × n ray pattern A is said to be spectrally arbitrary if for every monic nth degree polynomial f(x) with coefficients from C, there is a complex matrix in the ray pattern class of A such that its characteri...An n × n ray pattern A is said to be spectrally arbitrary if for every monic nth degree polynomial f(x) with coefficients from C, there is a complex matrix in the ray pattern class of A such that its characteristic polynomial is f(x). In this paper, a family ray patterns is proved to be spectrally arbitrary by using Nilpotent-Jacobian method.展开更多
文摘An n × n ray pattern A is said to be spectrally arbitrary if for every monic nth degree polynomial f(x) with coefficients from C, there is a complex matrix in the ray pattern class of A such that its characteristic polynomial is f(x). In this paper, a family ray patterns is proved to be spectrally arbitrary by using Nilpotent-Jacobian method.