Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fl uoride, b...Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fl uoride, boron carbide, and niobium pentoxide. The presence of NbC phase on the steel surface was confi rmed by X-ray diffraction analysis. Microscopic observation showed that niobium carbide coating formed on the substrate was smooth and compact. There was a distinct and fl at interface between the coating and substrate. The micro-hardness of niobium carbide coating was 2892±145HV. The thickness of coating ranged from 1.6 μm to 14μm. The forming kinetics of niobium carbide coating was revealed. Moreover, a contour diagram derived from experimental data was graphed for correct selection of process parameters. Some mathematical equations were built for predicting the coating thickness with predetermined processing temperature and time. The results showed that these mathematical equations are very practical as well as the kinetics equation.展开更多
An experinientally quantitative inveetisation has been made on the precipitationand coarsening behaviors of niobium carbide in a high strength low alloy(HSLA) steel. The results suggest that the static coarsening proc...An experinientally quantitative inveetisation has been made on the precipitationand coarsening behaviors of niobium carbide in a high strength low alloy(HSLA) steel. The results suggest that the static coarsening processes duringisothermal reaction in (α+γ) two phase region and during isothermal stay aftercertain amount of deformation of austenite are principally controlled by thediffusion of niobium atoms along dislocation pipes, and the volume fraction ofthe precipitates exerts sisnificant influence on the coarsening processes.Whereas the dynamic coarsening process during hot deformation of austeniteappoars to be dominated by the carbide/matrix interphase reaction.展开更多
The effects of rare earths on precipitation of NbC in austenite and ferrite have been investigated. The results show that precipitation of NbC is promoted in ferrite but retarded in austenite. The fit to different mod...The effects of rare earths on precipitation of NbC in austenite and ferrite have been investigated. The results show that precipitation of NbC is promoted in ferrite but retarded in austenite. The fit to different models by using the least square technique indicates that the addition of RE changes the rate constant of precipitation rather than the kinetic mechanism of precipitation.展开更多
Joint replacement surgery is one of the orthopedic surgeries with high successful rates;however,wear debris generated from prostheses can ultimately lead to periprosthetic osteolysis and failure of the implant.The imp...Joint replacement surgery is one of the orthopedic surgeries with high successful rates;however,wear debris generated from prostheses can ultimately lead to periprosthetic osteolysis and failure of the implant.The implant-derived particulate debris such as ultrahigh molecular weight polyethylene(UHMWPE)can initiate the local immune response and recruit monocytic cells to phagocytose particles for generating reactive oxygen species(ROS).ROS induces osteoclastogenesis and macrophages to secrete cytokines which ultimately promote the development of osteolysis.In this work,we develop the few-layered Nb_(2)C(FNC)as an antioxidant which possesses the feature of decreasing the production of cytokines and inhibiting osteoclastogenesis by its ROS adsorption.Moreover,local injection of FNC attenuates the UHMWPE-induced osteolysis in a mouse calvarial model.In sum,our results suggest that FNC can be used for treating osteolytic bone disease caused by excessive osteoclastogenesis.展开更多
The〈100〉oriented Fe83Ga17 alloy rods with various NbC contents less than 1at%were prepared by the directional solidification method at a growth rate of 720 mm·h^-1. Low NbC-content was found to affect the orien...The〈100〉oriented Fe83Ga17 alloy rods with various NbC contents less than 1at%were prepared by the directional solidification method at a growth rate of 720 mm·h^-1. Low NbC-content was found to affect the oriented grain growth and slightly improve the〈100〉ori-entation. Flat grain boundaries in the alloys with low NbC contents less than 0.2at%became greatly curved at higher NbC contents, and a large amount of Nb-rich precipitates were observed in the alloys with high NbC contents. Small amounts of NbC, less than 0.2at%, resulted in an increase in magnetostrictive strain due to the improvement of the〈100〉orientation, and a high magnetostrictive strain value of 335 ×10^-6 under a pre-stress of 15 MPa was obtained in the 0.1at%NbC-doped alloys. The magnetostrictive performance obviously decreased with the NbC addition higher than 0.5at%, and the strain sensitivity under no pre-stress was lower than that in the binary Fe?Ga alloy.展开更多
基金Funded by the National Natural Science Foundation of China(No.50675165)the National Key Technology R&D Program(No.2006BAF02A29)+1 种基金the Specialized Research Fund for the Doctoral Pro-gram of Higher Education of China(20131420120002)the Shanxi Prov-ince Science Foundation(No.2013011025-1)
文摘Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fl uoride, boron carbide, and niobium pentoxide. The presence of NbC phase on the steel surface was confi rmed by X-ray diffraction analysis. Microscopic observation showed that niobium carbide coating formed on the substrate was smooth and compact. There was a distinct and fl at interface between the coating and substrate. The micro-hardness of niobium carbide coating was 2892±145HV. The thickness of coating ranged from 1.6 μm to 14μm. The forming kinetics of niobium carbide coating was revealed. Moreover, a contour diagram derived from experimental data was graphed for correct selection of process parameters. Some mathematical equations were built for predicting the coating thickness with predetermined processing temperature and time. The results showed that these mathematical equations are very practical as well as the kinetics equation.
文摘An experinientally quantitative inveetisation has been made on the precipitationand coarsening behaviors of niobium carbide in a high strength low alloy(HSLA) steel. The results suggest that the static coarsening processes duringisothermal reaction in (α+γ) two phase region and during isothermal stay aftercertain amount of deformation of austenite are principally controlled by thediffusion of niobium atoms along dislocation pipes, and the volume fraction ofthe precipitates exerts sisnificant influence on the coarsening processes.Whereas the dynamic coarsening process during hot deformation of austeniteappoars to be dominated by the carbide/matrix interphase reaction.
文摘The effects of rare earths on precipitation of NbC in austenite and ferrite have been investigated. The results show that precipitation of NbC is promoted in ferrite but retarded in austenite. The fit to different models by using the least square technique indicates that the addition of RE changes the rate constant of precipitation rather than the kinetic mechanism of precipitation.
基金supported by National Key R&D Program of China(2018YFC1105904,2016YFA0201104)National Science Foundation of China(81772335,81941009,81802196,11874200)+2 种基金Natural Science Foundation of Jiangsu Province,China(BK20180127)Jiangsu Provincial Key Medical Talent FoundationSix Talent Peaks Project of Jiangsu Province(WSW-079).
文摘Joint replacement surgery is one of the orthopedic surgeries with high successful rates;however,wear debris generated from prostheses can ultimately lead to periprosthetic osteolysis and failure of the implant.The implant-derived particulate debris such as ultrahigh molecular weight polyethylene(UHMWPE)can initiate the local immune response and recruit monocytic cells to phagocytose particles for generating reactive oxygen species(ROS).ROS induces osteoclastogenesis and macrophages to secrete cytokines which ultimately promote the development of osteolysis.In this work,we develop the few-layered Nb_(2)C(FNC)as an antioxidant which possesses the feature of decreasing the production of cytokines and inhibiting osteoclastogenesis by its ROS adsorption.Moreover,local injection of FNC attenuates the UHMWPE-induced osteolysis in a mouse calvarial model.In sum,our results suggest that FNC can be used for treating osteolytic bone disease caused by excessive osteoclastogenesis.
基金supported by the Major State Basic Research Development Program of China(No. 2011CB606304)the National Natural Science Foundation of China(No.51271019)the Fundamental Research Funds for Central Universities of China(FRF-SD-12-025A)
文摘The〈100〉oriented Fe83Ga17 alloy rods with various NbC contents less than 1at%were prepared by the directional solidification method at a growth rate of 720 mm·h^-1. Low NbC-content was found to affect the oriented grain growth and slightly improve the〈100〉ori-entation. Flat grain boundaries in the alloys with low NbC contents less than 0.2at%became greatly curved at higher NbC contents, and a large amount of Nb-rich precipitates were observed in the alloys with high NbC contents. Small amounts of NbC, less than 0.2at%, resulted in an increase in magnetostrictive strain due to the improvement of the〈100〉orientation, and a high magnetostrictive strain value of 335 ×10^-6 under a pre-stress of 15 MPa was obtained in the 0.1at%NbC-doped alloys. The magnetostrictive performance obviously decreased with the NbC addition higher than 0.5at%, and the strain sensitivity under no pre-stress was lower than that in the binary Fe?Ga alloy.
基金supported by the National Natural Science Foundation of China(81902261,22175058,and 81772401)the Application Foundation and Advanced Program of Wuhan Science and Technology Bureau(2019020701011457)the Fundamental Research Funds for the Central Universities(2019kfyXMBZ063)。