Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PE...Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PEMFC environment was investigated. It was showed that the plating film was distributed on the surface of 316 stainless steel like isolated islands with height less than 50 nm. The XPS, XRD results showed that a smooth and strong chemical inert film of Nb O and Nb2O5 was formed on the surface of 316 stainless steel. In simulated cathodic condition, the corrosion potential of Nb coated stainless steel was improved by 244 m V, whilst in an anodic condition, it was improved by 105 m V. The current densities for the coated 316 stainless steel were decreased to 2.479 4 μA·cm-2 from 14.810 μA·cm-2 at-0.1 V and to 0.576 μA·cm-2 from 13.417 μA/·cm-2 at 0.6 V, respectively. It was implied that the niobium coating effectively decreased the corrosion rate. The results of the electrochemical tests indicated that the corrosion resistance of stainless steel was greatly improved after coated with niobium.展开更多
Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fl uoride, b...Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fl uoride, boron carbide, and niobium pentoxide. The presence of NbC phase on the steel surface was confi rmed by X-ray diffraction analysis. Microscopic observation showed that niobium carbide coating formed on the substrate was smooth and compact. There was a distinct and fl at interface between the coating and substrate. The micro-hardness of niobium carbide coating was 2892±145HV. The thickness of coating ranged from 1.6 μm to 14μm. The forming kinetics of niobium carbide coating was revealed. Moreover, a contour diagram derived from experimental data was graphed for correct selection of process parameters. Some mathematical equations were built for predicting the coating thickness with predetermined processing temperature and time. The results showed that these mathematical equations are very practical as well as the kinetics equation.展开更多
基金Funded by the National Natural Science Foundation of China(No.21276036)the Fundamental Research Funds for the Central Universities(No.3132014323)
文摘Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PEMFC environment was investigated. It was showed that the plating film was distributed on the surface of 316 stainless steel like isolated islands with height less than 50 nm. The XPS, XRD results showed that a smooth and strong chemical inert film of Nb O and Nb2O5 was formed on the surface of 316 stainless steel. In simulated cathodic condition, the corrosion potential of Nb coated stainless steel was improved by 244 m V, whilst in an anodic condition, it was improved by 105 m V. The current densities for the coated 316 stainless steel were decreased to 2.479 4 μA·cm-2 from 14.810 μA·cm-2 at-0.1 V and to 0.576 μA·cm-2 from 13.417 μA/·cm-2 at 0.6 V, respectively. It was implied that the niobium coating effectively decreased the corrosion rate. The results of the electrochemical tests indicated that the corrosion resistance of stainless steel was greatly improved after coated with niobium.
基金Funded by the National Natural Science Foundation of China(No.50675165)the National Key Technology R&D Program(No.2006BAF02A29)+1 种基金the Specialized Research Fund for the Doctoral Pro-gram of Higher Education of China(20131420120002)the Shanxi Prov-ince Science Foundation(No.2013011025-1)
文摘Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fl uoride, boron carbide, and niobium pentoxide. The presence of NbC phase on the steel surface was confi rmed by X-ray diffraction analysis. Microscopic observation showed that niobium carbide coating formed on the substrate was smooth and compact. There was a distinct and fl at interface between the coating and substrate. The micro-hardness of niobium carbide coating was 2892±145HV. The thickness of coating ranged from 1.6 μm to 14μm. The forming kinetics of niobium carbide coating was revealed. Moreover, a contour diagram derived from experimental data was graphed for correct selection of process parameters. Some mathematical equations were built for predicting the coating thickness with predetermined processing temperature and time. The results showed that these mathematical equations are very practical as well as the kinetics equation.