Direct methanol fuel cells have the advantages of simple system,convenient operation,high conversion rate and low carbon emission,which are considered as the environmental and friendly energy conversion devices.How-ev...Direct methanol fuel cells have the advantages of simple system,convenient operation,high conversion rate and low carbon emission,which are considered as the environmental and friendly energy conversion devices.How-ever,the low activity,CO-tolerance and high cost of anode catalysts restrict the large-scale commercial appli-cations.Therefore,it is of great practical significance to design and construct the anodic catalysts with high activity,stability and low cost for methanol oxidation reaction.In this work,the PtM/Nb_(2)O_(5)-C(M=Co,Sn,Ni)catalysts are synthesized by the ethylene glycol solvothermal method using transition metal oxide Nb_(2)O_(5)as the support.The catalytic performance of different catalysts is further evaluated for alkaline MOR.The results show that the introduction of Ni(existing in Ni^(2+)and Ni^(3+))has the most obvious improvement for alkaline MOR performance.By adjusting the doped ratio of Pt:Ni,it is shown that PtNi/Nb_(2)O_(5)-C has the highest mass activity(3877.9 mA-mg_(pt)^(-1)),12 times that of the commercial Pt/C catalyst.CV,LSV,Tafel and EIS analyses show that PtNi/Nb_(2)O_(5)-C has the lowest onset potential and charge transfer resistance,and the fastest electrocatalytic oxidation rate of methanol.CA tests show that the electrochemical stability is also significantly improved with the introduction of Nb_(2)O_(5)and Ni.Combined with the structural characterization and electrochemical tests,it is found that the evident electronic effect among Pt and Ni,Nb_(2)O_(5)and the hydroxyl brought from Ni species are mainly ascribed for enhancing the activity,CO resistance and stability of PtNi/Nb_(2)O_(5)-C.展开更多
Nano-sized γ-alumina (γ-Al2O3) was first prepared by a precipitation method. Then, active component of cobalt and a series of alkaline- earth metal promoters or nickel (Ni) with different contents were loaded on...Nano-sized γ-alumina (γ-Al2O3) was first prepared by a precipitation method. Then, active component of cobalt and a series of alkaline- earth metal promoters or nickel (Ni) with different contents were loaded on the γ-Al2O3 support. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD) and thermogravimetry analysis (TGA). The activity and selectivity of the catalysts in catalytic partial oxidation (CPO) of methane have been compared with Co/γ-Al2O3, and it is found that the catalytic activity, selectivity, and stability are enhanced by the addition of alkaline-earth metals and nickel. The optimal loadings of strontium (Sr) and Ni were 6 and 4 wt%, respectively. This finding will be helpful in designing the trimetallic Co-Ni-Sr/γ-Al2O3 catalysts with high performance in CPO of methane展开更多
Nanoparticulate gold catalysts supported on niobium oxides (Nb2O5) were prepared by different deposition methods. The deposition precipitation (DP) method, DP method with urea, deposition reduction (DR) method a...Nanoparticulate gold catalysts supported on niobium oxides (Nb2O5) were prepared by different deposition methods. The deposition precipitation (DP) method, DP method with urea, deposition reduction (DR) method and one‐pot method were used to prepare a 1 wt%Au/Nb2O5 catalyst. Lay‐ered‐type Nb2O5 synthesized by a hydrothermal method (Nb2O5(HT)) was the most suitable as a support among various types of Nb2O5 including commercially available Nb2O5 samples. It appeared that the large BET surface area of Nb2O5(HT) enabled the dispersion of gold as nanoparticles (NPs). Gold NPs with a mean diameter of about 5 nm were deposited by both the DP method and DR method on Nb2O5(HT) under an optimized condition. The temperature for 50%CO conversion for Au/Nb2O5(HT) prepared by the DR method was 73 °C. Without deposition of gold, Nb2O5(HT) showed no catalytic activity for CO oxidation even at 250 °C. Therefore, the enhancement of the activity by deposition of gold was remarkable. This simple Au/Nb2O5 catalyst will expand the types of gold catalysts to acidic supports, giving rise to new applications.展开更多
利用BET、NH3-TPD、FT-IR、MAS-NMR和SEM等方法研究了经不同F/Nb负载的F-Nb/HZSM-5催化剂的结构和表面酸性,并与乙醇催化脱水制乙烯的反应催化性能进行了关联。结果表明,F-Nb改性后的HZSM-5分子筛发生了明显的脱铝现象,且随着F离子添加...利用BET、NH3-TPD、FT-IR、MAS-NMR和SEM等方法研究了经不同F/Nb负载的F-Nb/HZSM-5催化剂的结构和表面酸性,并与乙醇催化脱水制乙烯的反应催化性能进行了关联。结果表明,F-Nb改性后的HZSM-5分子筛发生了明显的脱铝现象,且随着F离子添加量的增加,脱铝越发严重。经27Al MAS NMR测试显示,脱铝后产生了新的非骨架铝物种,其化学位移为-13.5。随F/Nb摩尔比的增大,改性HZSM-5的弱酸、强酸量都减少。当F/Nb摩尔比大于2时,NH3-TPD谱中观察到在500℃的高温区出现新的酸性位。当F/Nb摩尔比为0.7时,F-Nb/HZSM-5催化剂催化低浓度乙醇脱水制乙烯性能得到改善,转化率、选择性和产率均达到最高,且优于HZSM-5分子筛,F/Nb的添加有效延长了催化剂的稳定性。展开更多
The relationship between particle size and catalytic activity of gold nanoparticle catalysts with γ-Al2O3 as support has been investigated. The catalysts were prepared via the gold sol with different particle sizes b...The relationship between particle size and catalytic activity of gold nanoparticle catalysts with γ-Al2O3 as support has been investigated. The catalysts were prepared via the gold sol with different particle sizes by micelle method, and their structures were characterized by HRTEM and XRD, respectively. Furthermore, the catalytic activities were tested by CO oxidation. Experimental results showed that the catalytic activity became much weaker when gold particles were increased from 3.2 to 6.6 nm. Additionally, the particle size was also a key factor to govern catalytic activity with regard to gold supported on TiO2 prepared by the methods of deposition-precipitation.展开更多
基金National Natural Science Foundation of China(22075225,21706203,22038011 and 22005236)Natural Science Basic Research Plan in Shaanxi Province of China(2022JZ-07)+1 种基金State Key Laboratory of Clean and Efficient Coal Utilization,Taiyuan University of Technology(MJNYSKL202308)Key Research and Development Program in Shaanxi Province(2022QCY-LL-16).
文摘Direct methanol fuel cells have the advantages of simple system,convenient operation,high conversion rate and low carbon emission,which are considered as the environmental and friendly energy conversion devices.How-ever,the low activity,CO-tolerance and high cost of anode catalysts restrict the large-scale commercial appli-cations.Therefore,it is of great practical significance to design and construct the anodic catalysts with high activity,stability and low cost for methanol oxidation reaction.In this work,the PtM/Nb_(2)O_(5)-C(M=Co,Sn,Ni)catalysts are synthesized by the ethylene glycol solvothermal method using transition metal oxide Nb_(2)O_(5)as the support.The catalytic performance of different catalysts is further evaluated for alkaline MOR.The results show that the introduction of Ni(existing in Ni^(2+)and Ni^(3+))has the most obvious improvement for alkaline MOR performance.By adjusting the doped ratio of Pt:Ni,it is shown that PtNi/Nb_(2)O_(5)-C has the highest mass activity(3877.9 mA-mg_(pt)^(-1)),12 times that of the commercial Pt/C catalyst.CV,LSV,Tafel and EIS analyses show that PtNi/Nb_(2)O_(5)-C has the lowest onset potential and charge transfer resistance,and the fastest electrocatalytic oxidation rate of methanol.CA tests show that the electrochemical stability is also significantly improved with the introduction of Nb_(2)O_(5)and Ni.Combined with the structural characterization and electrochemical tests,it is found that the evident electronic effect among Pt and Ni,Nb_(2)O_(5)and the hydroxyl brought from Ni species are mainly ascribed for enhancing the activity,CO resistance and stability of PtNi/Nb_(2)O_(5)-C.
基金supported by the Open Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (No.200906)the Natural Science Foundation of Jiangxi Province (No.2010GZH0048)+1 种基金the National Natural Science Foundation of China (No. 21067004)the Young Science Foundation of Jiangxi Province Education Office (No. GJJ10150)
文摘Nano-sized γ-alumina (γ-Al2O3) was first prepared by a precipitation method. Then, active component of cobalt and a series of alkaline- earth metal promoters or nickel (Ni) with different contents were loaded on the γ-Al2O3 support. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD) and thermogravimetry analysis (TGA). The activity and selectivity of the catalysts in catalytic partial oxidation (CPO) of methane have been compared with Co/γ-Al2O3, and it is found that the catalytic activity, selectivity, and stability are enhanced by the addition of alkaline-earth metals and nickel. The optimal loadings of strontium (Sr) and Ni were 6 and 4 wt%, respectively. This finding will be helpful in designing the trimetallic Co-Ni-Sr/γ-Al2O3 catalysts with high performance in CPO of methane
文摘Nanoparticulate gold catalysts supported on niobium oxides (Nb2O5) were prepared by different deposition methods. The deposition precipitation (DP) method, DP method with urea, deposition reduction (DR) method and one‐pot method were used to prepare a 1 wt%Au/Nb2O5 catalyst. Lay‐ered‐type Nb2O5 synthesized by a hydrothermal method (Nb2O5(HT)) was the most suitable as a support among various types of Nb2O5 including commercially available Nb2O5 samples. It appeared that the large BET surface area of Nb2O5(HT) enabled the dispersion of gold as nanoparticles (NPs). Gold NPs with a mean diameter of about 5 nm were deposited by both the DP method and DR method on Nb2O5(HT) under an optimized condition. The temperature for 50%CO conversion for Au/Nb2O5(HT) prepared by the DR method was 73 °C. Without deposition of gold, Nb2O5(HT) showed no catalytic activity for CO oxidation even at 250 °C. Therefore, the enhancement of the activity by deposition of gold was remarkable. This simple Au/Nb2O5 catalyst will expand the types of gold catalysts to acidic supports, giving rise to new applications.
文摘利用BET、NH3-TPD、FT-IR、MAS-NMR和SEM等方法研究了经不同F/Nb负载的F-Nb/HZSM-5催化剂的结构和表面酸性,并与乙醇催化脱水制乙烯的反应催化性能进行了关联。结果表明,F-Nb改性后的HZSM-5分子筛发生了明显的脱铝现象,且随着F离子添加量的增加,脱铝越发严重。经27Al MAS NMR测试显示,脱铝后产生了新的非骨架铝物种,其化学位移为-13.5。随F/Nb摩尔比的增大,改性HZSM-5的弱酸、强酸量都减少。当F/Nb摩尔比大于2时,NH3-TPD谱中观察到在500℃的高温区出现新的酸性位。当F/Nb摩尔比为0.7时,F-Nb/HZSM-5催化剂催化低浓度乙醇脱水制乙烯性能得到改善,转化率、选择性和产率均达到最高,且优于HZSM-5分子筛,F/Nb的添加有效延长了催化剂的稳定性。
基金Project supported by the National Natural Science Foundation of China (No.50121202).
文摘The relationship between particle size and catalytic activity of gold nanoparticle catalysts with γ-Al2O3 as support has been investigated. The catalysts were prepared via the gold sol with different particle sizes by micelle method, and their structures were characterized by HRTEM and XRD, respectively. Furthermore, the catalytic activities were tested by CO oxidation. Experimental results showed that the catalytic activity became much weaker when gold particles were increased from 3.2 to 6.6 nm. Additionally, the particle size was also a key factor to govern catalytic activity with regard to gold supported on TiO2 prepared by the methods of deposition-precipitation.