Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the...Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.展开更多
This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the South...This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption.展开更多
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
The potential toxic effects of nitrate-nitrite-nitrosamine on pancreatic β cell have remained a controversial issue over the past two decades. In this study, we reviewed epidemiological studies investigated the assoc...The potential toxic effects of nitrate-nitrite-nitrosamine on pancreatic β cell have remained a controversial issue over the past two decades. In this study, we reviewed epidemiological studies investigated the associations between nitrate-nitrite-nitrosamines exposure, from both diet and drinking water to ascertain whether these compounds may contribute to development of type 1 diabetes. To identify relevant studies, a systematic search strategy of Pub Med, Scopus, and Science Direct was conducted using queries including the key words "nitrate", "nitrite", "nitrosamine" with "type 1 diabetes" or "insulin dependent diabetes mellitus". All searches were limited to studies published in English. Ecologic surveys, case-control and cohort studies have indicated conflicting results in relation to nitrate-nitrite exposure from drinking water and the risk of type 1 diabetes. A null, sometimes even negative association has been mainly reported in regions with a mean nitrate levels < 25 mg/L in drinking water, while increased risk of type 1 diabetes was observed in those with a maximum nitrate levels > 40-80 mg/L. Limited data are available regarding the potential diabetogenic effect of nitrite from drinking water, although there is evidence indicating dietary nitrite could be a risk factor for development of type 1 diabetes, an effect however that seems to be significant in a higher range of acceptable limit for nitrate/nitrite. Current data regarding dietary exposure of nitrosamine and development of type 1 diabetes is also inconsistent. Considering to an increasing trend of type 1 diabetes mellitus(T1DM) along with an elevated nitrate-nitrite exposure, additional research is critical to clarify potential harmful effects of nitrate-nitritenitrosamine exposure on β-cell autoimmunity and the risk of T1DM.展开更多
NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was investigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An une...NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was investigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An unexpected formation of nitrite/nitrate surface species on Ag/Pt(110)-(1 ×2) bimetallic surfaces is observed, then decompose at elevated temperatures to form N2. However, such nitrite/nitrate surface species do not form on clean Pt(110) and Ag-Pt alloy surfaces upon NO exposure at room temperature. The formation of nitrite/nitrate surface species on Ag/Pt(110)-(1×2) bimetallic surfaces is attributed to high reactivity of highly coordination-unsaturated Ag clusters and the synergetic effect between Ag clusters and Pt substrate.展开更多
The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicyl...The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicylic acid was employed as an innovative molecular probe of hydroxyl radical(OH) generated in aqueous nitrate and nitrite solutions through photochemical reactions. Kinetic studies showed that the steady-state concentrations of OH in aqueous NO- 3(10 mmol/L, pH=5) and NO- 2(10 mmol/L, pH=5) solutions under ultraviolet irradiation were at a same magnitude, 10 -15 mol/L. Apparent quantum yields of OH at 313 nm were measured as 0.011 and 0.07 for NO- 3 and NO- 2 respectively, all comparable to the results of previous studies.展开更多
A spectrophotometric technique is developed to simultaneously quantify nitrate and nitrite in plasma treated water.The measurement is based on examining the inflection points(wavelengths)in the derivative absorbance o...A spectrophotometric technique is developed to simultaneously quantify nitrate and nitrite in plasma treated water.The measurement is based on examining the inflection points(wavelengths)in the derivative absorbance of the nitrate or nitrite solution.At the inflection points of the pure nitrate solution,the derivative absorbance is zero and independent of the nitrate’s concentration,and thus the nitrite’s concentration in a mixed nitrate and nitrite solution can be obtained by using the Beer’s law at these points.The nitrate’s concentration can also be achieved from the inflection points of nitrite in the same manner.The relation between the tested substance’s(nitrate or nitrite)concentration and the second-or the third-order absorbances is obtained at these inflection points.Test measurements for mixed aqueous solutions of nitrate and nitrite with or without hydrogen peroxide confirm the reliability of this technique.We applied this technique to quantify the nitrate and nitrite generated in air plasma treated aqueous solutions.The results indicate that both nitrate and nitrite concentrations increase with the plasma treatment time,and the nitrite species is found to be generated prior to the nitrate species in the air plasma treated aqueous solution.Moreover,the production rate of total nitrogen species is independent of the solutions’p H value.These results are relevant to diverse applications of plasma activated solutions in materials processing,biotechnology,medicine and other fields.展开更多
The levels of nitrate and nitrite were determined in 102 samples of Syrian white cheese which represents the major production of total cheeses, manufactured mainly from cow’s milk and sheep’s milk in a less degree. ...The levels of nitrate and nitrite were determined in 102 samples of Syrian white cheese which represents the major production of total cheeses, manufactured mainly from cow’s milk and sheep’s milk in a less degree. Determination of nitrate and nitrite levels has been made by spectrophotometric method. The results for nitrate in cow’s and sheep’s milk cheeses reveal an average of 5.10 and 6.25 mg/kg, respectively. The results for nitrite in cow’s and sheep’s milk cheese were found to contain 1.24 and 1.31 mg/kg as an average, respectively. Several factors can play a role in the interpretation of the high nitrate content, such as livestock nutrition by forge with high nitrate load and water contaminated with nitrogen fertilizer and domestic effluents, primitive production techniques in many cases, and adding nitrate salts to prevent the growth of gas-producing bacteria caused by failing in the hygienic conditions. There is a necessity to apply strict controls to reduce the presence of these two anions in the Syrian white cheese.展开更多
During 1985-1987, the concentration of nitrate nitrogen was higher in the Laizhou Bay and the Bohai Bay while that of nitrite nitrogen was higher in the Liaodong Bay and the Bohai Bay. The concentration of nitrate nit...During 1985-1987, the concentration of nitrate nitrogen was higher in the Laizhou Bay and the Bohai Bay while that of nitrite nitrogen was higher in the Liaodong Bay and the Bohai Bay. The concentration of nitrate nitrogen was highest in winter and lowest in summer while that of nitrite nitrogen was highest in autumn and lowest in spring. The seasonal variation of the concentration of nitrate nitrogen was maximum in the Laizhou Bay and the Bohai Bay while that of the concentration of nitrite nitrogen was maximum in the Liaodong Bay. There was a great difference in the concentration of nitrate nitrogen between the surface and the bottom in autumn and in the concentration of nitrite nitrogen between the surface and the bottom in summer. The main reason for the seasonal variations of the concentration of nitrate nitrogen and nitrite nitrogen was the marine biochemical process. The nitrate nitrogen and nitrite nitrogen in the Bohai Sea basically maintained a quasi-equilibrium state seasonal cycle. The quasi-equilibrium state seasonal cycle of nitrate nitrogen and nitrite nitrogen at the bottom was stable while that at the surface was liable to variations caused by other factors.展开更多
The influence of pollution from petroleum refining activities on the levels of nitrates and nitrites in five edible vegetable species was investigated. Besides, the kinetics of nitrite and nitrate was studied in vivo ...The influence of pollution from petroleum refining activities on the levels of nitrates and nitrites in five edible vegetable species was investigated. Besides, the kinetics of nitrite and nitrate was studied in vivo using albino rats with focus on the possible influence of concentration difference on kinetics and implications to toxicity. Leaf samples of the five vegetable species were collected randomly from various locations within Eleme, a host community of Port Harcourt Refinery Company and the Indorama Petrochemical Company. Also, samples were collected from Umuahia, which served as pollution-free control. The leaf samples were analyzed for their nitrite and nitrate contents. Nitrite was determined spectrophotometrically while nitrate was determined after cadmium column reduction. Results showed that samples from Eleme had higher mean nitrate (349.20 mg/100g dry leaf mass;P 0.05) as compared to the same samples from Umuahia. Solutions of nitrate and nitrite, equivalent in concentration to mean nitrate and nitrite content of the vegetable samples from the two locations were administered enterally to four groups of albino rats. Analysis of their blood levels were monitored five times at 30 minutes intervals following administration. Rates of change of blood nitrites and nitrates were found to be fairly constant in absorption as well as in the elimination phase. Their peak blood concentrations varied proportionately with their concentrations in administered solutions. However, peak blood nitrate was attained later in group of animals receiving higher amount of nitrate solution. Refining activities may pre-dispose people living within Eleme community to health hazards through contamination of edible vegetables.展开更多
This paper presents results of nitrites and nitrates determination in two types of baby foods: commercial products in jars and their homemade conventional counterparts. Nitrites levels in all analyzed samples were be...This paper presents results of nitrites and nitrates determination in two types of baby foods: commercial products in jars and their homemade conventional counterparts. Nitrites levels in all analyzed samples were below of the detection limit (〈 0.9 mg/kg) of applied spectrophotometric method with Griess reagent. Nitrates contents in commercial products ranged: 9.1-38.1 mg/kg while in homemade baby foods levels between 26.6 mg/kg and 118.8 mg/kg were obtained. All the contents of nitrates were lower than the EU legislation maximum limit (200 mg/kg). Comparison of each type of commercial product with its homemade counterpart baby food evidenced significant differences (p 〈 0.05) in average nitrates levels in favor of the first type. Apart from determining and comparing the levels of nitrates in the baby food samples also risk assessment for an average 6-months old infant to nitrates exposure was conducted. The estimated nitrates intake with a typical portion of 200g of baby food ranged between 6% and 25.7% of acceptable daily intake for commercial and from 18.0% to 80.3% for homemade ones.展开更多
Studies have demonstrated that the presence of nitrate and nitrite in drinking water can cause some disease such as cancer and blu baby in the infant. The Environmental Protection Agency (EPA) has since adopted the 10...Studies have demonstrated that the presence of nitrate and nitrite in drinking water can cause some disease such as cancer and blu baby in the infant. The Environmental Protection Agency (EPA) has since adopted the 10 mg/L standard as the maximum contaminant level (MCL) for nitrate-nitrogen and 1 mg/L for nitrite-nitrogen for regulated public water systems. Given the importance of nitrate and nitrite in drinking water as well as GIS ability in spatial analysis of various factors in the groundwater, this study aimed to evaluate concentration of nitrate and nitrite in the drinking water wells of Yazd using two IDW (Inverse Distance Weighting) and Kriging models. In this descriptive study, the applied data on the water quality of underground water of Yazd Environmental Health Office and the average annual nitrate and nitrite in 2015 were related to 24 wells in the studied area. The nitrate and nitrite rate in groundwater in wells was compared to the standard amount of Institute of Standard and Industrial Researches and then was analyzed via Arc GIS software using IDW and Kriging interpolation methods. The mean concentration of nitrate was 17.62 ± 3.08 mg/l and for nitrite was 0.011 ± 0.003 mg/l in the wells. In the all studied zone, the nitrate and nitrite rate was in the standard range according to the National Standard of Iran (No. 1053). In this study, Kriging interpolation method was more efficient than IDW method.展开更多
Phenolic compounds are emitted into earth’s atmosphere through industry and biomass burning events. These compounds may react in the gas or particle phase to form additional airborne pollutants. In this work, the aqu...Phenolic compounds are emitted into earth’s atmosphere through industry and biomass burning events. These compounds may react in the gas or particle phase to form additional airborne pollutants. In this work, the aqueous phase chemical reactions of syringol, guaiacol, and catechol were studied in the presence of nitrate (NO-3 ) or nitrite ( NO-2) with and without UV illumination. The reactions were found to yield light absorbing products and electrospray ionization mass spectrometry (ESI-MS) experiments indicate some of the compounds formed may be the nitrated analogues of the starting organic compounds. However, infrared absorption data suggests the reaction products are composed of a complicated mixture. This suggests additional reactions occur simultaneously in solution. Treatment of the isolated reaction products with ozone (O3) suggest they are unstable and will eventually chemically decompose if/when formed in the atmosphere.展开更多
An alternative methodology for simultaneous determination of nitrite and nitrate by capillary zone electrophoresis using direct detection UV at 210 nm under reverse electrosmotic flow is proposed. The choice of the el...An alternative methodology for simultaneous determination of nitrite and nitrate by capillary zone electrophoresis using direct detection UV at 210 nm under reverse electrosmotic flow is proposed. The choice of the electrolyte composition has taken account: the mobility of the anion buffer and of the solutes;the low absorbance of the buffer in 210 nm;high base line stability and analysis time. The electrolyte optimized has consisted of 100 mmol.L–1 TRIS/HCl buffer and 0.15 mmol.L–1 CTAB at pH 8.2. The proposed method was applied successfully in the analysis of nitrite and nitrate in samples from urban stream in the absence of usual sample pretreatment.展开更多
The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial comp...The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity(NRC)and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitratereducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals(P < 0.05 in all five datasets with n = 20–82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate(a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment(P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria(P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.展开更多
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites...Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.展开更多
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ...Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.展开更多
Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas an...Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas and economic hubs.This study focuses on the high F^(−)and NO_(3)^(−)concentration groundwater in Tongzhou District,Beijing,North China.A total of 36 groundwater samples were collected to analyze the hydrochemical characteristics,elucidate genetic mechanisms and evaluate the potential human health risks.The results of the analysis indicate:Firstly,most of the groundwater samples are characterized by Mg-HCO_(3) and Na-HCO_(3) with the pH ranging from 7.19 to 8.28 and TDS with a large variation across the range 471-2337 mg/L.The NO_(3)^(−)concentration in 38.89%groundwater samples and the F^(−)concentration in 66.67%groundwater samples exceed the permissible limited value.Secondly,F^(−)in groundwater originates predominantly from water-rock interactions and the fluorite dissolution,which is also regulated by cation exchange,competitive adsorption of HCO_(3)−and an alkaline environment.Thirdly,the effect of sewage disposal and agricultural activities have a significant effect on high NO3-concentration,while the high F^(−)concentration is less influenced by anthropogenic activity.The alkaline environment favors nitrification,thus being conducive to the production of NO_(3)^(−).Finally,the health risk assessment is evaluated for different population groups.The results indicate that high NO_(3)^(−)and F^(−)concentration in groundwater would have the largest threat to children’s health.The findings of this study could contribute to the provision of a scientific basis for groundwater supply policy formulation relating to public health in Tongzhou District.展开更多
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig...Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.展开更多
The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving t...The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.展开更多
基金supported by the National Natural Science Foundation of China[Nos.U21A20332,52103226,52202275,52203314,and 12204253]the Distinguished Young Scholars Fund of Jiangsu Province[No.BK20220061]the Fellowship of China Postdoctoral Science Foundation[No.2021M702382]。
文摘Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.
文摘This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption.
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金supported by the Research Institute for Endocrine Sciences of Shahid Beheshti University of Medical Sciences
文摘The potential toxic effects of nitrate-nitrite-nitrosamine on pancreatic β cell have remained a controversial issue over the past two decades. In this study, we reviewed epidemiological studies investigated the associations between nitrate-nitrite-nitrosamines exposure, from both diet and drinking water to ascertain whether these compounds may contribute to development of type 1 diabetes. To identify relevant studies, a systematic search strategy of Pub Med, Scopus, and Science Direct was conducted using queries including the key words "nitrate", "nitrite", "nitrosamine" with "type 1 diabetes" or "insulin dependent diabetes mellitus". All searches were limited to studies published in English. Ecologic surveys, case-control and cohort studies have indicated conflicting results in relation to nitrate-nitrite exposure from drinking water and the risk of type 1 diabetes. A null, sometimes even negative association has been mainly reported in regions with a mean nitrate levels < 25 mg/L in drinking water, while increased risk of type 1 diabetes was observed in those with a maximum nitrate levels > 40-80 mg/L. Limited data are available regarding the potential diabetogenic effect of nitrite from drinking water, although there is evidence indicating dietary nitrite could be a risk factor for development of type 1 diabetes, an effect however that seems to be significant in a higher range of acceptable limit for nitrate/nitrite. Current data regarding dietary exposure of nitrosamine and development of type 1 diabetes is also inconsistent. Considering to an increasing trend of type 1 diabetes mellitus(T1DM) along with an elevated nitrate-nitrite exposure, additional research is critical to clarify potential harmful effects of nitrate-nitritenitrosamine exposure on β-cell autoimmunity and the risk of T1DM.
基金This work was supported by the National Natural Science Foundation of China (No.20973161 and No.11079033), the Ministry of Science and Technology of China (No.2010CB923302), the Fundamental Research Funds for the Central Universities, and the MPG-CAS partner group program.
文摘NO adsorption on Ag/Pt(110)-(1×2) bimetallic surfaces at room temperature was investigated by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. An unexpected formation of nitrite/nitrate surface species on Ag/Pt(110)-(1 ×2) bimetallic surfaces is observed, then decompose at elevated temperatures to form N2. However, such nitrite/nitrate surface species do not form on clean Pt(110) and Ag-Pt alloy surfaces upon NO exposure at room temperature. The formation of nitrite/nitrate surface species on Ag/Pt(110)-(1×2) bimetallic surfaces is attributed to high reactivity of highly coordination-unsaturated Ag clusters and the synergetic effect between Ag clusters and Pt substrate.
文摘The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicylic acid was employed as an innovative molecular probe of hydroxyl radical(OH) generated in aqueous nitrate and nitrite solutions through photochemical reactions. Kinetic studies showed that the steady-state concentrations of OH in aqueous NO- 3(10 mmol/L, pH=5) and NO- 2(10 mmol/L, pH=5) solutions under ultraviolet irradiation were at a same magnitude, 10 -15 mol/L. Apparent quantum yields of OH at 313 nm were measured as 0.011 and 0.07 for NO- 3 and NO- 2 respectively, all comparable to the results of previous studies.
基金National Natural Science Foundation of China(No.52077185)the Basic Research Program of Science and Technology of Shenzhen,China(No.JCYJ20190809162617137)for partial financial support。
文摘A spectrophotometric technique is developed to simultaneously quantify nitrate and nitrite in plasma treated water.The measurement is based on examining the inflection points(wavelengths)in the derivative absorbance of the nitrate or nitrite solution.At the inflection points of the pure nitrate solution,the derivative absorbance is zero and independent of the nitrate’s concentration,and thus the nitrite’s concentration in a mixed nitrate and nitrite solution can be obtained by using the Beer’s law at these points.The nitrate’s concentration can also be achieved from the inflection points of nitrite in the same manner.The relation between the tested substance’s(nitrate or nitrite)concentration and the second-or the third-order absorbances is obtained at these inflection points.Test measurements for mixed aqueous solutions of nitrate and nitrite with or without hydrogen peroxide confirm the reliability of this technique.We applied this technique to quantify the nitrate and nitrite generated in air plasma treated aqueous solutions.The results indicate that both nitrate and nitrite concentrations increase with the plasma treatment time,and the nitrite species is found to be generated prior to the nitrate species in the air plasma treated aqueous solution.Moreover,the production rate of total nitrogen species is independent of the solutions’p H value.These results are relevant to diverse applications of plasma activated solutions in materials processing,biotechnology,medicine and other fields.
文摘The levels of nitrate and nitrite were determined in 102 samples of Syrian white cheese which represents the major production of total cheeses, manufactured mainly from cow’s milk and sheep’s milk in a less degree. Determination of nitrate and nitrite levels has been made by spectrophotometric method. The results for nitrate in cow’s and sheep’s milk cheeses reveal an average of 5.10 and 6.25 mg/kg, respectively. The results for nitrite in cow’s and sheep’s milk cheese were found to contain 1.24 and 1.31 mg/kg as an average, respectively. Several factors can play a role in the interpretation of the high nitrate content, such as livestock nutrition by forge with high nitrate load and water contaminated with nitrogen fertilizer and domestic effluents, primitive production techniques in many cases, and adding nitrate salts to prevent the growth of gas-producing bacteria caused by failing in the hygienic conditions. There is a necessity to apply strict controls to reduce the presence of these two anions in the Syrian white cheese.
文摘During 1985-1987, the concentration of nitrate nitrogen was higher in the Laizhou Bay and the Bohai Bay while that of nitrite nitrogen was higher in the Liaodong Bay and the Bohai Bay. The concentration of nitrate nitrogen was highest in winter and lowest in summer while that of nitrite nitrogen was highest in autumn and lowest in spring. The seasonal variation of the concentration of nitrate nitrogen was maximum in the Laizhou Bay and the Bohai Bay while that of the concentration of nitrite nitrogen was maximum in the Liaodong Bay. There was a great difference in the concentration of nitrate nitrogen between the surface and the bottom in autumn and in the concentration of nitrite nitrogen between the surface and the bottom in summer. The main reason for the seasonal variations of the concentration of nitrate nitrogen and nitrite nitrogen was the marine biochemical process. The nitrate nitrogen and nitrite nitrogen in the Bohai Sea basically maintained a quasi-equilibrium state seasonal cycle. The quasi-equilibrium state seasonal cycle of nitrate nitrogen and nitrite nitrogen at the bottom was stable while that at the surface was liable to variations caused by other factors.
文摘The influence of pollution from petroleum refining activities on the levels of nitrates and nitrites in five edible vegetable species was investigated. Besides, the kinetics of nitrite and nitrate was studied in vivo using albino rats with focus on the possible influence of concentration difference on kinetics and implications to toxicity. Leaf samples of the five vegetable species were collected randomly from various locations within Eleme, a host community of Port Harcourt Refinery Company and the Indorama Petrochemical Company. Also, samples were collected from Umuahia, which served as pollution-free control. The leaf samples were analyzed for their nitrite and nitrate contents. Nitrite was determined spectrophotometrically while nitrate was determined after cadmium column reduction. Results showed that samples from Eleme had higher mean nitrate (349.20 mg/100g dry leaf mass;P 0.05) as compared to the same samples from Umuahia. Solutions of nitrate and nitrite, equivalent in concentration to mean nitrate and nitrite content of the vegetable samples from the two locations were administered enterally to four groups of albino rats. Analysis of their blood levels were monitored five times at 30 minutes intervals following administration. Rates of change of blood nitrites and nitrates were found to be fairly constant in absorption as well as in the elimination phase. Their peak blood concentrations varied proportionately with their concentrations in administered solutions. However, peak blood nitrate was attained later in group of animals receiving higher amount of nitrate solution. Refining activities may pre-dispose people living within Eleme community to health hazards through contamination of edible vegetables.
文摘This paper presents results of nitrites and nitrates determination in two types of baby foods: commercial products in jars and their homemade conventional counterparts. Nitrites levels in all analyzed samples were below of the detection limit (〈 0.9 mg/kg) of applied spectrophotometric method with Griess reagent. Nitrates contents in commercial products ranged: 9.1-38.1 mg/kg while in homemade baby foods levels between 26.6 mg/kg and 118.8 mg/kg were obtained. All the contents of nitrates were lower than the EU legislation maximum limit (200 mg/kg). Comparison of each type of commercial product with its homemade counterpart baby food evidenced significant differences (p 〈 0.05) in average nitrates levels in favor of the first type. Apart from determining and comparing the levels of nitrates in the baby food samples also risk assessment for an average 6-months old infant to nitrates exposure was conducted. The estimated nitrates intake with a typical portion of 200g of baby food ranged between 6% and 25.7% of acceptable daily intake for commercial and from 18.0% to 80.3% for homemade ones.
文摘Studies have demonstrated that the presence of nitrate and nitrite in drinking water can cause some disease such as cancer and blu baby in the infant. The Environmental Protection Agency (EPA) has since adopted the 10 mg/L standard as the maximum contaminant level (MCL) for nitrate-nitrogen and 1 mg/L for nitrite-nitrogen for regulated public water systems. Given the importance of nitrate and nitrite in drinking water as well as GIS ability in spatial analysis of various factors in the groundwater, this study aimed to evaluate concentration of nitrate and nitrite in the drinking water wells of Yazd using two IDW (Inverse Distance Weighting) and Kriging models. In this descriptive study, the applied data on the water quality of underground water of Yazd Environmental Health Office and the average annual nitrate and nitrite in 2015 were related to 24 wells in the studied area. The nitrate and nitrite rate in groundwater in wells was compared to the standard amount of Institute of Standard and Industrial Researches and then was analyzed via Arc GIS software using IDW and Kriging interpolation methods. The mean concentration of nitrate was 17.62 ± 3.08 mg/l and for nitrite was 0.011 ± 0.003 mg/l in the wells. In the all studied zone, the nitrate and nitrite rate was in the standard range according to the National Standard of Iran (No. 1053). In this study, Kriging interpolation method was more efficient than IDW method.
文摘Phenolic compounds are emitted into earth’s atmosphere through industry and biomass burning events. These compounds may react in the gas or particle phase to form additional airborne pollutants. In this work, the aqueous phase chemical reactions of syringol, guaiacol, and catechol were studied in the presence of nitrate (NO-3 ) or nitrite ( NO-2) with and without UV illumination. The reactions were found to yield light absorbing products and electrospray ionization mass spectrometry (ESI-MS) experiments indicate some of the compounds formed may be the nitrated analogues of the starting organic compounds. However, infrared absorption data suggests the reaction products are composed of a complicated mixture. This suggests additional reactions occur simultaneously in solution. Treatment of the isolated reaction products with ozone (O3) suggest they are unstable and will eventually chemically decompose if/when formed in the atmosphere.
基金The authors wish to acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq-476386/2007-1 and 300593/2008-2)Fundacao de Am-paroàPesquisa do Estado de Minas Gerais of Brazil(FA-PEMIG-CEX-APQ 1906-502/07,CEX APQ 01837/08 and CEX PPM 00326/09)Coordenacao de Aper-feicoamento de Pessoal de Nível Superior(CAPES)for fellowships and financial support.
文摘An alternative methodology for simultaneous determination of nitrite and nitrate by capillary zone electrophoresis using direct detection UV at 210 nm under reverse electrosmotic flow is proposed. The choice of the electrolyte composition has taken account: the mobility of the anion buffer and of the solutes;the low absorbance of the buffer in 210 nm;high base line stability and analysis time. The electrolyte optimized has consisted of 100 mmol.L–1 TRIS/HCl buffer and 0.15 mmol.L–1 CTAB at pH 8.2. The proposed method was applied successfully in the analysis of nitrite and nitrate in samples from urban stream in the absence of usual sample pretreatment.
基金funded by grants from EU Marie Curie ITN RAPID(grant number 290246)Versus Arthritis(Grant Number 20823)+4 种基金the BBSRC(BB/P504567/1)supported by a student stipend from the University of Glasgow and Dentsply Sirona(Project Number 300881)supported by a grant from the European Regional Development Fund and the Spanish Ministry of Science,Innovation and Universities with the reference RTI2018-102032-B-I00the Valencian Innovation Agency with the reference INNVAL20/19/006supported by an FPI fellowship from the Spanish Ministry of Science,Innovation,and Universities with the reference Bio2015-68711-R。
文摘The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity(NRC)and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitratereducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals(P < 0.05 in all five datasets with n = 20–82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate(a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment(P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria(P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.
基金the financial support from the Natural Science Foundation of China(Grant No.52172106)Anhui Provincial Natural Science Foundation(Grant Nos.2108085QB60 and 2108085QB61)China Postdoctoral Science Foundation(Grant Nos.2020M682057 and 2023T160651).
文摘Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.
基金supported by the the Guizhou Provincial Excellent Young Talents Project of Science and Technology,China(YQK(2023)002)the Guizhou Provincial Science and Technology Projects,China((2022)Key 008)+2 种基金the Guizhou Provincial Science and Technology Support Plan,China((2022)Key 026)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China((2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China((2023)007)。
文摘Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.
基金supported by the project of China Geological Survey(Grant No.DD20221677-2)the fundamental research funds of Chinese Academy of Geological Sciences Basal Research Fund(Grant No.JKYQN202307).
文摘Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas and economic hubs.This study focuses on the high F^(−)and NO_(3)^(−)concentration groundwater in Tongzhou District,Beijing,North China.A total of 36 groundwater samples were collected to analyze the hydrochemical characteristics,elucidate genetic mechanisms and evaluate the potential human health risks.The results of the analysis indicate:Firstly,most of the groundwater samples are characterized by Mg-HCO_(3) and Na-HCO_(3) with the pH ranging from 7.19 to 8.28 and TDS with a large variation across the range 471-2337 mg/L.The NO_(3)^(−)concentration in 38.89%groundwater samples and the F^(−)concentration in 66.67%groundwater samples exceed the permissible limited value.Secondly,F^(−)in groundwater originates predominantly from water-rock interactions and the fluorite dissolution,which is also regulated by cation exchange,competitive adsorption of HCO_(3)−and an alkaline environment.Thirdly,the effect of sewage disposal and agricultural activities have a significant effect on high NO3-concentration,while the high F^(−)concentration is less influenced by anthropogenic activity.The alkaline environment favors nitrification,thus being conducive to the production of NO_(3)^(−).Finally,the health risk assessment is evaluated for different population groups.The results indicate that high NO_(3)^(−)and F^(−)concentration in groundwater would have the largest threat to children’s health.The findings of this study could contribute to the provision of a scientific basis for groundwater supply policy formulation relating to public health in Tongzhou District.
文摘Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.
基金supported by the National Key R&D Program of China(Nos.2022YFA1503104 and 2022YFA1503102)the Natural Science Foundation of Shandong Province(No.2022HWYQ-009)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20230243)Taishan Scholars Project(No.tspd20230601)Qilu Young Scholars Program of Shandong University.
文摘The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.