The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theore...The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO_(2)(Fe-TiO_(2)).The OVs formation energy in Fe-TiO_(2)(1.12 eV)was only 23.6%of that in TiO_(2)(4.74 eV),explaining why Fe^(3+)doping could introduce OVs in the TiO_(2)lattice.The calculation results also indicated that impurity states introduced by Fe^(3+)and OVs enhanced the light absorption activity of TiO_(2).Additionally,charge carrier transport was investigated through the carrier lifetime and relative mass.The carrier lifetime of Fe-TiO_(2)(4.00,4.10,and 3.34 ns for 1at%,2at%,and 3at%doping contents,respectively)was longer than that of undoped TiO_(2)(3.22 ns),indicating that Fe^(3+) and OVs could promote charge carrier separation,which can be attributed to the larger relative effective mass of electrons and holes.Herein,Fe-TiO_(2)has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.展开更多
The semimetal Bi has received increasing interest as an alternative to noble metals for use in plasmonic photocatalysis. To enhance the photocatalytic efficiency of metallic Bi, Bi microspheres modified by SiO2 nanopa...The semimetal Bi has received increasing interest as an alternative to noble metals for use in plasmonic photocatalysis. To enhance the photocatalytic efficiency of metallic Bi, Bi microspheres modified by SiO2 nanoparticles were fabricated by a facile method. Bi-O-Si bonds were formed between Bi and SiO2, and acted as a transportation channel for hot electrons. The SiO2@Bi microspheres exhibited an enhanced plasmon-mediated photocatalytic activity for the removal of NO in air under 280 nm light irradiation, as a result of the enlarged specific surface areas and the promotion of electron transfer via the Bi-O-Si bonds. The reaction mechanism of photocatalytic oxidation of NO by SiO2@Bi was revealed with electron spin resonance and in situ diffuse reflectance infrared Fourier transform spectroscopy experiments, and involved the chain reaction NO -> NO2 -> NO3- with center dot OH and center dot O-2(-) radicals as the main reactive species. The present work could provide new insights into the in-depth mechanistic understanding of Bi plasmonic photocatalysis and the design of high-performance Bi-based photocatalysts. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.展开更多
Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NO_(x) with NH_(3).A variety of characterization...Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NO_(x) with NH_(3).A variety of characterization techniques(NH_(3)-SCO,BET,XRD,XPS,UV-Vis,NH_(3)-TPD,H_(2)-TPR)were used to explore the changes of the active sites,acid sites and pore structure of the catalyst.It was found that the dispersion of active Cu species and Fe species had great influences on the catalytic activity in the whole catalytic process.The Cu doping into the Fe-ZSM-5 catalyst produced new active species,isolated Cu ions and CuO particles,resulting in the improved low-temperature catalytic activity.However,the NH_(3) oxidation was enhanced,and part of the Fe^(3+)active sites and more Brønsted acidic sites in the catalyst were occupied by Cu species,which causes the decrease of the high-temperature activity.The recovery of hightemperature activity could be attributed to the recovery of active Cu species and Fe species promoted by Ce and the promotion of active species dispersion.The results provide theoretical support for adjusting the active window of Febased SCR catalyst by multi-metal doping.展开更多
基金supported by the BJAST High-level Innovation Team Program (No.BGS202001)the Beijing Postdoctoral Research Foundation (No.2022-ZZ-046)+3 种基金the National Natural and Science Foundation of China (No.51972026)the Japan Society for the Promotion of Science (JSPS)Grant-in-Aid for the Scientific Research (KAKENHI,Nos.16H06439 and 20H00297)the Dynamic Alliance for Open Innovations Bridging Human,Environment and Materials,the Cooperative Research Program of“Network Joint Research Center for Materials and Devices.”the scholarship granted to a visiting Ph.D.student of the Inter-University Exchange Project by the China Scholarship Council (CSC,No.201906460113)。
文摘The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO_(2)(Fe-TiO_(2)).The OVs formation energy in Fe-TiO_(2)(1.12 eV)was only 23.6%of that in TiO_(2)(4.74 eV),explaining why Fe^(3+)doping could introduce OVs in the TiO_(2)lattice.The calculation results also indicated that impurity states introduced by Fe^(3+)and OVs enhanced the light absorption activity of TiO_(2).Additionally,charge carrier transport was investigated through the carrier lifetime and relative mass.The carrier lifetime of Fe-TiO_(2)(4.00,4.10,and 3.34 ns for 1at%,2at%,and 3at%doping contents,respectively)was longer than that of undoped TiO_(2)(3.22 ns),indicating that Fe^(3+) and OVs could promote charge carrier separation,which can be attributed to the larger relative effective mass of electrons and holes.Herein,Fe-TiO_(2)has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.
基金supported by the National Natural Science Foundation of China(21501016,51478070,21406022,21676037)the National Key R&D Project(2016YFC0204702)+4 种基金the Innovative Research Team of Chongqing(CXTDG201602014)the Natural Science Foundation of Chongqing(cstc2016jcyjA 0481,cstc2015jcyjA 0061)the Science and Technology Project of Chongqing Education Commission(KJ1600625,KJ1500637)the Application and Basic Science Project of Ministry of Transport of People's Republic of China(2015319814100)the Innovative Research Project from CTBU(yjscxx2016-060-36)~~
文摘The semimetal Bi has received increasing interest as an alternative to noble metals for use in plasmonic photocatalysis. To enhance the photocatalytic efficiency of metallic Bi, Bi microspheres modified by SiO2 nanoparticles were fabricated by a facile method. Bi-O-Si bonds were formed between Bi and SiO2, and acted as a transportation channel for hot electrons. The SiO2@Bi microspheres exhibited an enhanced plasmon-mediated photocatalytic activity for the removal of NO in air under 280 nm light irradiation, as a result of the enlarged specific surface areas and the promotion of electron transfer via the Bi-O-Si bonds. The reaction mechanism of photocatalytic oxidation of NO by SiO2@Bi was revealed with electron spin resonance and in situ diffuse reflectance infrared Fourier transform spectroscopy experiments, and involved the chain reaction NO -> NO2 -> NO3- with center dot OH and center dot O-2(-) radicals as the main reactive species. The present work could provide new insights into the in-depth mechanistic understanding of Bi plasmonic photocatalysis and the design of high-performance Bi-based photocatalysts. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
基金Project(51906089)supported by the National Natural Science Foundation of ChinaProject(NELMS2018A18)supported by the National Engineering Laboratory for Mobile Source Emission Control Technology,China+1 种基金Project(XNYQ2021-002)supported by the Provincial Engineering Research Center for New Energy Vehicle Intelligent Control and Simulation Test Technology of Sichuan,ChinaProject(GY2020016)supported by the Zhenjiang City Key R&D Program,China。
文摘Fe-ZSM-5 catalysts modified by Cu and Ce by aqueous solution ion-exchange and incipient wetness impregnation methods were tested in the selective catalytic reduction of NO_(x) with NH_(3).A variety of characterization techniques(NH_(3)-SCO,BET,XRD,XPS,UV-Vis,NH_(3)-TPD,H_(2)-TPR)were used to explore the changes of the active sites,acid sites and pore structure of the catalyst.It was found that the dispersion of active Cu species and Fe species had great influences on the catalytic activity in the whole catalytic process.The Cu doping into the Fe-ZSM-5 catalyst produced new active species,isolated Cu ions and CuO particles,resulting in the improved low-temperature catalytic activity.However,the NH_(3) oxidation was enhanced,and part of the Fe^(3+)active sites and more Brønsted acidic sites in the catalyst were occupied by Cu species,which causes the decrease of the high-temperature activity.The recovery of hightemperature activity could be attributed to the recovery of active Cu species and Fe species promoted by Ce and the promotion of active species dispersion.The results provide theoretical support for adjusting the active window of Febased SCR catalyst by multi-metal doping.