Iron-nitride films were prepared by reactive sputtering, and the effect of annealing treatment on the structures was investigated by means of in-situ electron microscopy and high resolution electron microscopy (HREM)....Iron-nitride films were prepared by reactive sputtering, and the effect of annealing treatment on the structures was investigated by means of in-situ electron microscopy and high resolution electron microscopy (HREM). As-deposited films were observed to be a mixed structure of a few ultrafine epsilon-Fe2-3N particles existing in the amorphous matrix. it was found that the structure-relaxation in the amorphous occurred at 473 K, and the ultrafine grains began to grow at the higher annealing temperatures. The transition of the amorphous to epsilon-Fe2-3N was almost completed at 673 K. It is considered that the formation of the ideal epsilon-Fe3N is originated from the ordering of the nitrogen atoms during the annealing in vacuum. On the other hand, gamma'-phase (Fe4N) was seen to precipitation of epsilon-phase at 723 K. Two possible modes are proposed in the precipitation of gamma'-phase, depending on the heating rate and crystallographic orientation relationships, i.e. [121](epsilon)//[001](gamma), (2(1) over bar0$)(epsilon)//(110)(gamma) and [100](epsilon)//[110](gamma), (001)(epsilon)//(111)(gamma). In addition, alpha-Fe particles were observed to form from the gamma'-phase at high temperatures. We assumed that these structural changes are due to the diffusion of nitrogen and iron atoms during the annealing, except for the case of the precipitation of the gamma'-phase as depicted above. The results obtained in this work are in a good agreement with the assumption.展开更多
How to manufacture the high magnetic induction grain-oriented silicon steel(Hi-B steel)by the process featured with the primary recrystallization annealing was demonstrated,during which nitriding and decarburizing w...How to manufacture the high magnetic induction grain-oriented silicon steel(Hi-B steel)by the process featured with the primary recrystallization annealing was demonstrated,during which nitriding and decarburizing were simultaneously realized in laboratory.By the techniques of optical microscope,scanning electronic microscope and electron backscattered diffraction,both the microstructure and the texture in the samples were characterized.The samples had been subjected to nitriding to different nitrogen contents at two specified temperatures using the two defined microstructural parameters:the grain size inhomogeneity factorσ*and the texture factor AR.The former is the ratio of the mean value to standard deviation of grain sizes;the latter is the ratio of the total volume fraction of the harmful textures to that of beneficial textures including {110}〈001〉.When the N content increased from 0.0055%to 0.0330%after the annealing at both 835 and 875°C,the resultant recrystallized grain size decreased butσ*changed little;whilst the rise of annealing temperature from 835 to 875°C resulted in the increase in both grain size andσ*.Moreover,either the injected N content or temperature had insignificant influence on the components of primary recrystallization texture developed during annealing.However,the increase of temperature led to the decreases in both intensity and volume fraction of{001}〈120〉and{110}〈001〉textures but increases in the{114}〈481〉andγfiber textures and the resultant decrease of AR.展开更多
文摘Iron-nitride films were prepared by reactive sputtering, and the effect of annealing treatment on the structures was investigated by means of in-situ electron microscopy and high resolution electron microscopy (HREM). As-deposited films were observed to be a mixed structure of a few ultrafine epsilon-Fe2-3N particles existing in the amorphous matrix. it was found that the structure-relaxation in the amorphous occurred at 473 K, and the ultrafine grains began to grow at the higher annealing temperatures. The transition of the amorphous to epsilon-Fe2-3N was almost completed at 673 K. It is considered that the formation of the ideal epsilon-Fe3N is originated from the ordering of the nitrogen atoms during the annealing in vacuum. On the other hand, gamma'-phase (Fe4N) was seen to precipitation of epsilon-phase at 723 K. Two possible modes are proposed in the precipitation of gamma'-phase, depending on the heating rate and crystallographic orientation relationships, i.e. [121](epsilon)//[001](gamma), (2(1) over bar0$)(epsilon)//(110)(gamma) and [100](epsilon)//[110](gamma), (001)(epsilon)//(111)(gamma). In addition, alpha-Fe particles were observed to form from the gamma'-phase at high temperatures. We assumed that these structural changes are due to the diffusion of nitrogen and iron atoms during the annealing, except for the case of the precipitation of the gamma'-phase as depicted above. The results obtained in this work are in a good agreement with the assumption.
基金financially sponsored by the State Key Special Project of Key Basic Material Technical Promotion and Industrialization(2016YFB0300305)
文摘How to manufacture the high magnetic induction grain-oriented silicon steel(Hi-B steel)by the process featured with the primary recrystallization annealing was demonstrated,during which nitriding and decarburizing were simultaneously realized in laboratory.By the techniques of optical microscope,scanning electronic microscope and electron backscattered diffraction,both the microstructure and the texture in the samples were characterized.The samples had been subjected to nitriding to different nitrogen contents at two specified temperatures using the two defined microstructural parameters:the grain size inhomogeneity factorσ*and the texture factor AR.The former is the ratio of the mean value to standard deviation of grain sizes;the latter is the ratio of the total volume fraction of the harmful textures to that of beneficial textures including {110}〈001〉.When the N content increased from 0.0055%to 0.0330%after the annealing at both 835 and 875°C,the resultant recrystallized grain size decreased butσ*changed little;whilst the rise of annealing temperature from 835 to 875°C resulted in the increase in both grain size andσ*.Moreover,either the injected N content or temperature had insignificant influence on the components of primary recrystallization texture developed during annealing.However,the increase of temperature led to the decreases in both intensity and volume fraction of{001}〈120〉and{110}〈001〉textures but increases in the{114}〈481〉andγfiber textures and the resultant decrease of AR.