Superconducting vanadium nitride (VN) is successfully synthesized by a solid-state reaction of vanadium pentox- ide, sodium amide and sulfur in an autoclave at a relatively low temperature (240-400℃). The obtaine...Superconducting vanadium nitride (VN) is successfully synthesized by a solid-state reaction of vanadium pentox- ide, sodium amide and sulfur in an autoclave at a relatively low temperature (240-400℃). The obtained samples are characterized by x-ray diffraction, x-ray photoelectron spectroscopy and transmission electron microscopy. The result of the magnetization of the obtained VN product as a function of temperature indicates that the onset superconducting transition temperature is about 8.4K. Furthermore, the possible reaction mechanism is also discussed.展开更多
To explore the reaction behavior of trace oxygen during the flash combustion process of falling FeSi75 powder in a nitrogen flow, a flash-combustion-synthesized Fe-Si;N;sample was heat-treated to remove SiO;. The samp...To explore the reaction behavior of trace oxygen during the flash combustion process of falling FeSi75 powder in a nitrogen flow, a flash-combustion-synthesized Fe-Si;N;sample was heat-treated to remove SiO;. The samples before and after the treatment were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, and the formation mechanism of SiO;was investigated. The results show that SiO;in the Fe-Si;N;is mainly located on the surface or around the Si;N;particles in dense areas, existing in both crystalline and amorphous states; when the FeSi75 particles, which are less than 0.074 mm in size, fell in up-flowing hot N;stream, trace oxygen in the N;stream did not significantly hinder the nitridation of FeSi75 particles as it was consumed by the surface oxidation of the generated Si;N;particles to form SiO;. At the reaction zone, the oxidation of Si;N;particles decreased the oxygen partial pressure in the N;stream and greatly reduced the opportunity for FeSi75 particles to be oxidized into SiO;; by virtue of the SiO;film developed on the surface, the Si;N;particles adhered to each other and formed dense areas in the material.展开更多
Two-dimensional(2D) materials have recently received a great deal of attention due to their unique structures and fascinating properties,as well as their potential applications.2D hexagonal boron nitride(2D hBN),a...Two-dimensional(2D) materials have recently received a great deal of attention due to their unique structures and fascinating properties,as well as their potential applications.2D hexagonal boron nitride(2D hBN),an insulator with excellent thermal stability,chemical inertness,and unique electronic and optical properties,and a band gap of 5.97 e V,is considered to be an ideal candidate for integration with other 2D materials.Nevertheless,the controllable growth of high-quality 2D h-BN is still a great challenge.A comprehensive overview of the progress that has been made in the synthesis of 2D h-BN is presented,highlighting the advantages and disadvantages of various synthesis approaches.In addition,the electronic,optical,thermal,and mechanical properties,heterostructures,and related applications of 2D h-BN are discussed.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20160292the Natural Science Foundation of the Higher Educations Institutions of Jiangsu Province under Grant No 16KJB150013+1 种基金the National Natural Science Foundation of China under Grant No U1404505the Program for Innovative Talent in University of Henan Province under Grant No16HASTIT010
文摘Superconducting vanadium nitride (VN) is successfully synthesized by a solid-state reaction of vanadium pentox- ide, sodium amide and sulfur in an autoclave at a relatively low temperature (240-400℃). The obtained samples are characterized by x-ray diffraction, x-ray photoelectron spectroscopy and transmission electron microscopy. The result of the magnetization of the obtained VN product as a function of temperature indicates that the onset superconducting transition temperature is about 8.4K. Furthermore, the possible reaction mechanism is also discussed.
基金financially supported by the National Nature Science Foundation of China (No.51572019)
文摘To explore the reaction behavior of trace oxygen during the flash combustion process of falling FeSi75 powder in a nitrogen flow, a flash-combustion-synthesized Fe-Si;N;sample was heat-treated to remove SiO;. The samples before and after the treatment were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, and the formation mechanism of SiO;was investigated. The results show that SiO;in the Fe-Si;N;is mainly located on the surface or around the Si;N;particles in dense areas, existing in both crystalline and amorphous states; when the FeSi75 particles, which are less than 0.074 mm in size, fell in up-flowing hot N;stream, trace oxygen in the N;stream did not significantly hinder the nitridation of FeSi75 particles as it was consumed by the surface oxidation of the generated Si;N;particles to form SiO;. At the reaction zone, the oxidation of Si;N;particles decreased the oxygen partial pressure in the N;stream and greatly reduced the opportunity for FeSi75 particles to be oxidized into SiO;; by virtue of the SiO;film developed on the surface, the Si;N;particles adhered to each other and formed dense areas in the material.
基金Project supported by the National Natural Science Foundation of China(Nos.61376007,61674137)the National Key Research and Development Program of China(No.2016YFB0400802)
文摘Two-dimensional(2D) materials have recently received a great deal of attention due to their unique structures and fascinating properties,as well as their potential applications.2D hexagonal boron nitride(2D hBN),an insulator with excellent thermal stability,chemical inertness,and unique electronic and optical properties,and a band gap of 5.97 e V,is considered to be an ideal candidate for integration with other 2D materials.Nevertheless,the controllable growth of high-quality 2D h-BN is still a great challenge.A comprehensive overview of the progress that has been made in the synthesis of 2D h-BN is presented,highlighting the advantages and disadvantages of various synthesis approaches.In addition,the electronic,optical,thermal,and mechanical properties,heterostructures,and related applications of 2D h-BN are discussed.