Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides compo...Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides composite powder addition on oxidation resistance of the Al2O3 - C refractories was investigated by measuring the thickness of oxidation layer. Phase compositions of the Al2O3 - C refractories before and after oxidation were investigated by X-ray diffraction ( XRD ). Results show that the oxidation resistance of the Al2O3 - C refractories can be obviously improved by adding the synthesized ZrO2 - nitrides composite powder. The formation of mullite and zircon in the oxidation layer results in the densification of oxidation layer, which prevents oxygen diffusion and bnproves the oxidation resistance of the Al2O3 - C refractories.展开更多
High purity vanadium nitride(VN)powders were prepared via a two-step process using vanadium trioxide(V2 O3)as the raw material.The V2 O3 was firstly reduced at 873 K in Ar atmosphere via magnesiothermic reduction reac...High purity vanadium nitride(VN)powders were prepared via a two-step process using vanadium trioxide(V2 O3)as the raw material.The V2 O3 was firstly reduced at 873 K in Ar atmosphere via magnesiothermic reduction reaction to get the mixture of V and MgO,and then the products were further nitrided at 1473 K in N2 atmosphere.Finally,the as-prepared samples were acid-leached to obtain pure VN powders.X-ray diffractometry and field-emission scanning electron microscopy were used to analyze the phase transition and morphological evolution of the samples.The results reveal that the overall morphology of the obtained VN powder retains the morphology of the initial V2 O3 powders.After removing MgO by acidic leaching,the porous VN particles can be obtained,with the oxygen content of 0.178 wt.%.Compared with the traditional methods,high purity VN powders with a small amount of oxygen and no carbon can be obtained.展开更多
Si3N4 powder was synthesized by carbothermal re- duction nitridation reaction using sawdust as carbon source and introducing SiO2 by silica sol immersion. Effects of SiO2 content of silica sol, molding pressure, react...Si3N4 powder was synthesized by carbothermal re- duction nitridation reaction using sawdust as carbon source and introducing SiO2 by silica sol immersion. Effects of SiO2 content of silica sol, molding pressure, reaction temperature, reaction duration, and N2 flow rate on phase compositions and microstructure of result- ants were studied. The results show that using 7. 5 mass% SiO2 containing silica sol immersed sawdust as raw materials, the prepared Si3N4 powder is featured with high α-Si3N4 content, few impurities, etc. in the conditions of 1 450 ℃ of reaction temperature, 9 h of reaction duration, 400 mL ·min- 1 of N2 flow rate and 10 MPa of molding pressure.展开更多
This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of m...This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of metal additives inhibited nitridation,while some metal additives such as Fe,Cu,Cr,and Ca increased nitrida—tion.Otherwise,the addition of metals might lead to the degradation of physical and mechanical properties of Si3N4.All the rare earth oxides,especially CeO2 and Eu2O3,showed nitridation enhancing effect.In addition,ZrO2 with small particle size showed a stronger enhancing effect.展开更多
High-entropy nitride powders are one of prerequisite materials for the preparation of high-performance high-entropy nitride ceramics.In this paper,high-entropy(HfZrTiNbTa)N powders were synthesized via nitride(i.e.,si...High-entropy nitride powders are one of prerequisite materials for the preparation of high-performance high-entropy nitride ceramics.In this paper,high-entropy(HfZrTiNbTa)N powders were synthesized via nitride(i.e.,silicon nitride(Si_(3)N_(4)))thermal reduction with soft mechanochemical assistance.The results show that metal oxides like hafnium dioxide(HfO_(2)),zirconium dioxide(ZrO_(2)),titanium dioxide(TiO_(2)),niobium pentoxide(Nb_(2)O_(5)),and tantalum pentoxide(Ta_(2)O_(5))can all be transformed into the corresponding metal nitrides in the presence of Si_(3)N_(4)at 1700℃,and solid solution of the metal nitrides can be formed as the temperature increases to 2100℃.The high-entropy(HfZrTiNbTa)N powders with submicron-sized particles,a narrower size distribution,and a single face-centered cubic(fcc)structure are obtained from raw material mixtures ground for 10 h and subsequently sintered at 1800℃.In addition,the high-entropy bulk nitride ceramics with relative density(Rw)of 94.31%±0.76%,Vickers hardness of 21.00±0.94 GPa,and fracture toughness(KIC)of 3.18±0.16 MPa·m1/2 are obtained with submicron-sized powders,which are superior to those obtained with micron-sized powders.展开更多
TiN- Al2O3 composite powder was prepared by aluminothermic reduction- nitridation method with starting materials of aluminum-containing dross and rutile,and metallic aluminum in the aluminum-containing dross as reduce...TiN- Al2O3 composite powder was prepared by aluminothermic reduction- nitridation method with starting materials of aluminum-containing dross and rutile,and metallic aluminum in the aluminum-containing dross as reducer. The influences of synthesis temperature(600-1 400 ℃) and aluminum-containing dross addition(20% lower than theoretical value,theoretical value,20% higher than theoretical value,and 50% higher than theoretical value) on phase compositions and microstructure of the composites were investigated,and the reaction mechanism was analyzed. The results show that(1) TiN- Al2O3 composite powder can be synthesized under the experimental conditions; the main phases are TiN,α-Al2O3,a little bytownite,and MgAl2O4;(2)enhancing synthesis temperature or increasing aluminumcontaining dross addition favors the reaction of aluminothermic reduction- nitridation;(3) in the synthesized products,α-Al2O3 is platy or columnar; TiN is sub-micron granular,which reinforces and toughens the composite.展开更多
文摘Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides composite powder addition on oxidation resistance of the Al2O3 - C refractories was investigated by measuring the thickness of oxidation layer. Phase compositions of the Al2O3 - C refractories before and after oxidation were investigated by X-ray diffraction ( XRD ). Results show that the oxidation resistance of the Al2O3 - C refractories can be obviously improved by adding the synthesized ZrO2 - nitrides composite powder. The formation of mullite and zircon in the oxidation layer results in the densification of oxidation layer, which prevents oxygen diffusion and bnproves the oxidation resistance of the Al2O3 - C refractories.
基金Project(51725401) supported by the National Natural Science Foundation of China
文摘High purity vanadium nitride(VN)powders were prepared via a two-step process using vanadium trioxide(V2 O3)as the raw material.The V2 O3 was firstly reduced at 873 K in Ar atmosphere via magnesiothermic reduction reaction to get the mixture of V and MgO,and then the products were further nitrided at 1473 K in N2 atmosphere.Finally,the as-prepared samples were acid-leached to obtain pure VN powders.X-ray diffractometry and field-emission scanning electron microscopy were used to analyze the phase transition and morphological evolution of the samples.The results reveal that the overall morphology of the obtained VN powder retains the morphology of the initial V2 O3 powders.After removing MgO by acidic leaching,the porous VN particles can be obtained,with the oxygen content of 0.178 wt.%.Compared with the traditional methods,high purity VN powders with a small amount of oxygen and no carbon can be obtained.
文摘Si3N4 powder was synthesized by carbothermal re- duction nitridation reaction using sawdust as carbon source and introducing SiO2 by silica sol immersion. Effects of SiO2 content of silica sol, molding pressure, reaction temperature, reaction duration, and N2 flow rate on phase compositions and microstructure of result- ants were studied. The results show that using 7. 5 mass% SiO2 containing silica sol immersed sawdust as raw materials, the prepared Si3N4 powder is featured with high α-Si3N4 content, few impurities, etc. in the conditions of 1 450 ℃ of reaction temperature, 9 h of reaction duration, 400 mL ·min- 1 of N2 flow rate and 10 MPa of molding pressure.
基金financially supported by Guangdong Innovative and Entrepreneurial Research Team Program ( No. 2013G061)the National Natural Science Foundation of China ( No. 51402055)
文摘This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of metal additives inhibited nitridation,while some metal additives such as Fe,Cu,Cr,and Ca increased nitrida—tion.Otherwise,the addition of metals might lead to the degradation of physical and mechanical properties of Si3N4.All the rare earth oxides,especially CeO2 and Eu2O3,showed nitridation enhancing effect.In addition,ZrO2 with small particle size showed a stronger enhancing effect.
基金supported by the National Natural Science Foundation of China(Nos.51662002,51762002,and 52104358)Graduate Student Innovation Program(No.YCX22138)the Key Research and Development Program of Ningxia,China(No.2019BFH02021)。
文摘High-entropy nitride powders are one of prerequisite materials for the preparation of high-performance high-entropy nitride ceramics.In this paper,high-entropy(HfZrTiNbTa)N powders were synthesized via nitride(i.e.,silicon nitride(Si_(3)N_(4)))thermal reduction with soft mechanochemical assistance.The results show that metal oxides like hafnium dioxide(HfO_(2)),zirconium dioxide(ZrO_(2)),titanium dioxide(TiO_(2)),niobium pentoxide(Nb_(2)O_(5)),and tantalum pentoxide(Ta_(2)O_(5))can all be transformed into the corresponding metal nitrides in the presence of Si_(3)N_(4)at 1700℃,and solid solution of the metal nitrides can be formed as the temperature increases to 2100℃.The high-entropy(HfZrTiNbTa)N powders with submicron-sized particles,a narrower size distribution,and a single face-centered cubic(fcc)structure are obtained from raw material mixtures ground for 10 h and subsequently sintered at 1800℃.In addition,the high-entropy bulk nitride ceramics with relative density(Rw)of 94.31%±0.76%,Vickers hardness of 21.00±0.94 GPa,and fracture toughness(KIC)of 3.18±0.16 MPa·m1/2 are obtained with submicron-sized powders,which are superior to those obtained with micron-sized powders.
文摘TiN- Al2O3 composite powder was prepared by aluminothermic reduction- nitridation method with starting materials of aluminum-containing dross and rutile,and metallic aluminum in the aluminum-containing dross as reducer. The influences of synthesis temperature(600-1 400 ℃) and aluminum-containing dross addition(20% lower than theoretical value,theoretical value,20% higher than theoretical value,and 50% higher than theoretical value) on phase compositions and microstructure of the composites were investigated,and the reaction mechanism was analyzed. The results show that(1) TiN- Al2O3 composite powder can be synthesized under the experimental conditions; the main phases are TiN,α-Al2O3,a little bytownite,and MgAl2O4;(2)enhancing synthesis temperature or increasing aluminumcontaining dross addition favors the reaction of aluminothermic reduction- nitridation;(3) in the synthesized products,α-Al2O3 is platy or columnar; TiN is sub-micron granular,which reinforces and toughens the composite.