期刊文献+
共找到240篇文章
< 1 2 12 >
每页显示 20 50 100
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation 被引量:1
1
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber boron nitride Thermal conductivity Electrical insulation
下载PDF
Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments
2
作者 Ruike Zhang Ruiang Guo +3 位作者 Qian Li Shuaiqi Li Haidong Long Duanwei He 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期450-457,共8页
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi... Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance. 展开更多
关键词 hexagonal boron nitride phase diagram high temperature and high pressure cubic boron nitride phase transition differential thermal analysis
下载PDF
Boron Nitride-Integrated Lithium Batteries:Exploring Innovations in Longevity and Performance
3
作者 Shayan Angizi Sayed Ali Ahmad Alem +3 位作者 Mahdi Torabian Maryam Khalaj Dmitri Golberg Amir Pakdel 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期13-40,共28页
The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of... The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of emerging power sources addressing these challenges.Recent studies have shown that integrating hexagonal boron nitride(h-BN)nanomaterials into LBs enhances the safety,longevity,and electrochemical performance of all LB components,including electrodes,electrolytes,and separators,thereby suggesting their potential value in advancing eco-friendly energy solutions.This review provides an overview of the most recent applications of h-BN nanomaterials in LBs.It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications.Subsequently,it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations,offering valuable insights into the potential of BN nanomaterials.The review then proceeds to outline the functions of h-BN in LB components,emphasizing the molecular-level mechanisms responsible for performance improvements.Finally,the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research. 展开更多
关键词 ELECTRODE ELECTROLYTE hexagonal boron nitride lithium battery SEPARATOR
下载PDF
Coaxial Wet Spinning of Boron Nitride Nanosheet‑Based Composite Fibers with Enhanced Thermal Conductivity and Mechanical Strength
4
作者 Wenjiang Lu Qixuan Deng +3 位作者 Minsu Liu Baofu Ding Zhiyuan Xiong Ling Qiu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期126-138,共13页
Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni... Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs. 展开更多
关键词 boron nitride nanosheets Coaxial fiber Interfacial compression Nanosheet aligning Wearable thermal management
下载PDF
Synthesis of boron nitride nanorod and its performance as a metalfree catalyst for oxidative desulfurization of diesel fuel
5
作者 Tanaz Ghanadi Gholamreza Moradi Alimorad Rashidi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期120-132,共13页
In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by hea... In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by heating treatment at 900℃ in nitrogen atmosphere that the characteristics of the sample were identified by the X-ray diffraction,Fourier-transform infrared spectroscopy,Raman spectroscopy,field emission scanning electron microscopy,transmission electron microscopy,atomic force microscopy,and N2 adsorption-desorption isotherms.The results of structural and morphological analysis represented that BN has been successfully synthesized.The efficacy of the main operating parameters on the process was studied by using response surface methodology based on the Box-Behnken design method.The prepared catalyst showed high efficiency in oxidative desulfurization of diesel fuel with initial sulfur content of 8040 mg·kg^(-1)S.From statistical analysis,a significant quadratic model was obtained to predict the sulfur removal as a function of efficient parameters.The maximum efficiency of 72.4%was achieved under optimized conditions at oxidant/sulfur molar ratio of 10.2,temperature of 71℃,reaction time of 113 min,and catalyst dosage of 0.36 g.Also,the reusability of the BN was studied,and the result showed little reduction in activity of the catalyst after 10 times regeneration.Moreover,a plausible mechanism was proposed for oxidation of sulfur compounds on the surface of the catalyst.The present study shows that BN materials can be selected as promising metal-free catalysts for desulfurization process. 展开更多
关键词 DESULFURIZATION boron nitride(BN)nanostructure Experimental design BoxeBehnken
下载PDF
An Efficient Boron Source Activation Strategy for the Low‑Temperature Synthesis of Boron Nitride Nanotubes
6
作者 Ying Wang Kai Zhang +10 位作者 Liping Ding Liyun Wu Songfeng E Qian He Nanyang Wang Hui Zuo Zhengyang Zhou Feng Ding Yue Hu Jin Zhang Yagang Yao 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期548-558,共11页
Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ... Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs. 展开更多
关键词 boron nitride nanotubes LOW-TEMPERATURE boron activation Density functional theory
下载PDF
3D-printable Boron Nitride/Polyacrylic Hydrogel Composites with High Thermal Conductivities
7
作者 DAI Jialei XUE Bingyu +5 位作者 QIAN Qi HE Wenhao ZHU Chenglong LEI Liwen WANG Kun XIE Jingjing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1303-1310,共8页
Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of... Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained. 展开更多
关键词 hydrogel composites boron nitride 3D printing thermal conductivity
下载PDF
Significant strengthening of copper-based composites using boron nitride nanotubes 被引量:2
8
作者 Naiqi Chen Quan Li +4 位作者 Youcao Ma Kunming Yang Jian Song Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1764-1778,共15页
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w... Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature. 展开更多
关键词 boron nitride nanotubes copper matrix composites excellent mechanical property strengthening mechanism
下载PDF
Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films 被引量:2
9
作者 Taoqing Huang Xinyu Zhang +5 位作者 Tian Wang Honggang Zhang Yongwei Li Hua Bao Min Chen Limin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期14-24,共11页
While boron nitride(BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties,a... While boron nitride(BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties,a great challenge is the poor vertical thermal conductivity when embedded in composites owing to the poor interracial interaction causing severe phonon scattering.Here,we report a novel surface modification strategy called the "self-modified nanointerface" using BN nanocrystals(BNNCs) to efficiently link the interface between BN and the polymer matrix.Combining with ice-press assembly method,an only 25 wt% BNembedded composite film can not only possess an in-plane thermal conductivity of 20.3 W m-1K-1but also,more importantly,achieve a through-plane thermal conductivity as high as 21.3 W m-1K-1,which is more than twice the reported maximum due to the ideal phonon spectrum matching between BNNCs and BN fillers,the strong interaction between the self-modified fillers and polymer matrix,as well as ladder-structured BN skeleton.The excellent thermal conductivity has been verified by theoretical calculations and the heat dissipation of a CPU.This study provides an innovative design principle to tailor composite interfaces and opens up a new path to develop high-performance composites. 展开更多
关键词 Thermal management materials boron nitride Thermal conductivity Interfacial thermal resistance
下载PDF
Porous heterostructure of graphene/hexagonal boron nitride as an efficient electrocatalyst for hydrogen peroxide generation 被引量:2
10
作者 Mengmeng Fan Zeming Wang +10 位作者 Yuying Zhao Qixin Yuan Jian Cui Jithu Raj Kang Sun Ao Wang Jingjie Wu Hao Sun Bei Li Liang Wang Jianchun Jiang 《Carbon Energy》 SCIE CSCD 2023年第5期138-151,共14页
Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous car... Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous carbon materials composed of abundant graphene/hexagonal boron nitride(G/h-BN)heterostructures.Metal Ni powder and nanoscale h-BN sheets are used as a catalytic substrate/hard template and“nucleation seed”for the formation of the heterostructure,respectively.As-prepared G/h-BN heterostructures exhibit enhanced electrocatalytic activity toward H_(2)O_(2) generation with 86%-95%selectivity at the range of 0.45-0.75 V versus reversible hydrogen electrode(RHE)and a positive onset potential of 0.79 versus RHE(defined at a ring current density of 0.3 mA cm^(-2))in the alkaline solution.In a flow cell,G/h-BN heterostructured electrocatalyst has a H_(2)O_(2) production rate of up to 762 mmol g_(catalyst)^(-1) h^(-1) and Faradaic efficiency of over 75%during 12 h testing,superior to the reported carbon-based electrocatalysts.The density functional theory simulation suggests that the B atoms at the interface of the G/h-BN heterostructure are the key active sites.This research provides a new route to activate carbon catalysts toward highly active and selective O_(2)-to-H_(2)O_(2) conversion. 展开更多
关键词 efficient electrocatalyst GRAPHENE H_(2)O_(2)generation hexagonal boron nitride porous heterostructure
下载PDF
A mini review on oxidative dehydrogenation of propane over boron nitride catalysts
11
作者 Zhu Fu De-Zheng Li +5 位作者 Li-Dai Zhou Yu-Ming Li Jia-Wen Guo Yu-Qiao Li Hui-Min Liu Qi-Jian Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2488-2498,共11页
Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards... Oxidative dehydrogenation of propane is an attractive route for the synthesis of propylene due to its favorable thermodynamic and kinetic characteristics, however, it is challenging to realize high selectivity towards propylene. Recently, it has been discovered that boron nitride (BN) is a promising catalyst that affords superior selectivity towards propylene in oxidative dehydrogenation of propane. Summarizing the progress and unravelling the reaction mechanism of BN in oxidative dehydrogenation of propane are of great significance for the rational design of efficient catalysts in the future. Herein, in this review, the underlying reaction mechanisms of oxidative dehydrogenation of propane over BN are extracted;the developed BN catalysts are classified into pristine BN, functionalized BN, supported BN and others, and the applications of each category of BN catalysts in oxidative dehydrogenation of propane are summarized;the challenges and opportunities on oxidative dehydrogenation of propane over BN are pointed out, aiming to inspire more studies and advance this research field. 展开更多
关键词 Oxidative dehydrogenation of propane boron nitride PROPYLENE Reaction mechanism
下载PDF
The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability
12
作者 Jianhui Zhou Guohao Du +3 位作者 Jianfeng Hu Xin Lai Shan Liu Zhengguo Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期11-21,共11页
Adopting organic phase change materials(PCMs) for the management of electronic devices is restricted by low thermal conductivity. In this paper, the composite PCMs are established by freeze-drying and vacuum impregnat... Adopting organic phase change materials(PCMs) for the management of electronic devices is restricted by low thermal conductivity. In this paper, the composite PCMs are established by freeze-drying and vacuum impregnation. Herein, polyethylene glycol(PEG) is induced as heat storage materials, boron nitride(BN) is embedded as filler stacking in an orderly fashion on the foam walls to improve thermal conductivity and sodium alginate(SA) is formed as supporting material to keep the shape of the composite stable. X-ray diffractometry, scanning electron microscopy-energy dispersive spectrometer, thermal gravimetric analysis, thermal conductivity meter, differential scanning calorimeter, and Fourier transform infrared were used to characterize the samples and thermal cycles were employed to measure the shape stability. The results exhibit the BN@SA/PEG composite PCMs have good chemical compatibility, stable morphology, and thermal stability. Due to the high porosity of foam, PEG endows the composite PCMs with high latent heat(149.11 and 141.59 J·g^(-1)). Simultaneously, BN@SA/PEG shows an excellent heat performance with high thermal conductivity(0.99 W·m^(-1)·K^(-1)), reusability, and shape stability, contributing the composite PCMs to application in the energy storage field. This study provides a strategy to manufacture flexible, long-serving, and shape-stable PCMs via introducing BN@SA foam as a storage framework, and these PCMs have great potential in thermal management in the electronic field. 展开更多
关键词 Porous structure boron nitride Organic phase change material Thermal conductivity Energy storage
下载PDF
High-Throughput Growth of Hexagonal Boron Nitride Film Using Porous-Structure Isolation Layer
13
作者 Ruitao Jia Fangzhu Qing Xuesong Li 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期45-51,共7页
Chemical vapor deposition is considered as the most hopeful method for the synthesis of large-area high-quality hexagonal boron nitride on the substrate of catalytic metal. However, the size the hexagonal boron nitrid... Chemical vapor deposition is considered as the most hopeful method for the synthesis of large-area high-quality hexagonal boron nitride on the substrate of catalytic metal. However, the size the hexagonal boron nitride films are limited to the size of growth chamber, which indicates a lower production efficiency. In this paper, the utilization efficiency of growth chamber is highly improved by alternately stacking multiple pieces of Cu foils and carbon fiber surface felt with porous structure. Uniform and continuous hexagonal boron nitride films are prepared on Cu foils through chemical vapor deposition utilizing ammonia borane as the precursor. This work develops a simple and practicable method for high-throughput preparation of hexagonal boron nitride films, which could contribute to the industrial application of hexagonal boron nitride. . 展开更多
关键词 Hexagonal boron Nitride Chemical Vapor Deposition Porous Structure Isolation Layer High Throughput
下载PDF
Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst 被引量:11
14
作者 石磊 闫冰 +3 位作者 邵丹 姜凡 王东琪 陆安慧 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期389-395,共7页
Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane c... Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane conversion of 11%.Even at high conversion level of 63%,the selectivity of ethylene retained at 80%,which is competitive with the energy-demanding industrialized steam cracking route.A long-term test for 200 h resulted in stable conversion and product selectivity,showing the excellent catalytic stability.Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation. 展开更多
关键词 boron nitride HYDROXYLATION ETHANE Oxidative dehydrogenation ETHYLENE
下载PDF
Effects of BN on the Mechanical and Thermal Properties of PP/BN Composites
15
作者 陈厚振 王艳芝 +4 位作者 NAN Yu WANG Xu YUE Xianyang ZHANG Yifei FAN Huiling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期345-352,共8页
In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moul... In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one. 展开更多
关键词 thermal properties POLYPROPYLENE COMPOSITES hexagonal boron nitride
下载PDF
Promoting role of Ru species on Ir-Fe/BN catalyst in 1,2-diols hydrogenolysis to secondary alcohols
16
作者 Ben Liu Yoshinao Nakagawa +1 位作者 Mizuho Yabushita Keiichi Tomishige 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期89-102,共14页
Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with n... Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation.Herein,Ru was found as an effective modifier among the screened noble metals(Ru,Pt,Rh,Pd,Au,and Ag)for Ir-Fe/BN(Ir=5 wt%,Fe/Ir=0.25)catalyst in terminal C−O hydrogenolysis of 1,2-butanediol(1,2-BuD)to 2-butanol(2-BuOH).Only trace amount of Ru(up to 0.5 wt%)was effective in terms of high 2-BuOH selectivity(>60%)and activity(about twice).Larger amount of Ru species(3 wt%)highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission.Optimized catalyst(Ru(0.5)-Ir-Fe/BN)was reusable at least 4 times and gave moderate 2-BuOH yield(47%)in hydrogenolysis of 1,2-BuD.The promoting effect of Ru addition(0.5 wt%)to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed.Combining catalytic tests with various characterizations,the promotion mechanism of Ru species in trimetallic catalysts was clarified.The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface,and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy.The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols via direct C−O hydrogenolysis,in which Ru-modified Ir activates H_(2) to form hydride-like species.The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate.Larger loading amount of Ru species(3 wt%)led to the formation Ru-rich trimetallic alloy,which further works as active sites for C−C bond scission. 展开更多
关键词 Biomass-based polyols Secondary alcohol HYDRODEOXYGENATION Trimetallic alloy boron nitride
下载PDF
Reaction between Ti and boron nitride based investment shell molds used for casting titanium alloys 被引量:9
17
作者 LILT Hongbao SHEN Bin +2 位作者 ZHU Ming ZHOU Xing MAO Xiemin 《Rare Metals》 SCIE EI CAS CSCD 2008年第6期617-622,共6页
The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are ... The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are made of pretreated hexagonal boron nitride (hBN) with a few yttria (Y2O3) and colloidal yttria as binder. The Ti-6Al-4V alloy was melted in a controlled atmosphere induction furnace with a segment water-cooled copper crucible. The cross-section of reaction interface between Ti alloys and shell mold was investigated by electron probe micro-analyzer (EPMA) and microhardness tester. The results show that the reaction is not serious, the thickness of the reacting layer is about 30-50 μm, and the thickness of α-case is about 180-200 pro. Moreover the α-case formation mechanism was also discussed. 展开更多
关键词 boron nitride shell mold titanium alloy interface reaction investment casting
下载PDF
Hexagonal boron nitride adsorbent: Synthesis, performance tailoring and applications 被引量:7
18
作者 Jun Xiong Jun Di +1 位作者 Wenshuai Zhu Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期99-111,I0004,共14页
Hexagonal boron nitride(h-BN),with unique structural and properties,has shown enormous potentitoward variety of possible applications.By virtue of partially-ionic character of BN chemical bonds anusually large specifi... Hexagonal boron nitride(h-BN),with unique structural and properties,has shown enormous potentitoward variety of possible applications.By virtue of partially-ionic character of BN chemical bonds anusually large specific surface area,h-BN-related nanostructures exhibit appealing adsorption propertiewhich can be widely applied for separation and purification towards energy and environment treatmenIn this review,recent progress in designing h-BN micro,nano-structure,controlled synthesis,performancoptimizing as well as energy and environment-related adsorption applications are summarized.Strategieto tailor the h-BN can be classified as morphology control,element doping,defect control and surfacmodification,focusing on how to optimize the adsorption performance.In order to insight the intrinsimechanism of tuning strategies for property optimization,the significant adsorption applications of h-Btowards hydrogen storage,CO2 capture,pollutants removal from water and adsorption desulfurization arpresented. 展开更多
关键词 Hexagonal boron nitride ADSORBENT Structure tuning ENERGY ENVIRONMENT
下载PDF
Electronic interaction between single Pt atom and vacancies on boron nitride nanosheets and its influence on the catalytic performance in the direct dehydrogenation of propane 被引量:7
19
作者 Xiaoying Sun Meijun Liu +2 位作者 Yaoyao Huang Bo Li Zhen Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期819-825,共7页
The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of sin... The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of single Pt atom supported on vacancies in a boron nitride nanosheet.Moreover,the relation between the EMSI and the performance of Pt in propane direct dehydrogenation(PDH)is investigated in detail.The charge state and partial density of states of single Pt atom show distinct features at different anchoring positions,such as boron and nitrogen vacancies(Bvac and Nvac,respectively).Single Pt atom become positively and negatively charged on Bvac and Nvac,respectively.Therefore,the electronic structure of Pt can be adjusted by rational deposition on the support.Moreover,Pt atoms in different charge states have been shown to have different catalytic abilities in PDH.The DFT calculations reveal that Pt atoms on Bvac(Pt-Bvac)have much higher reactivity towards reactant/product adsorption and C–H bond activation than Pt supported on Nvac(Pt-Nvac),with larger adsorption energy and lower barrier along the reaction pathway.However,the high reactivity of Pt-Bvac also hinders propene desorption,which could lead to unwanted deep dehydrogenation.Therefore,the results obtained herein suggest that a balanced reactivity for C–H activation in propane and propene desorption is required to achieve optimum yields.Based on this descriptor,a single Pt atom on a nitrogen vacancy is considered an effective catalyst for PDH.Furthermore,the deep dehydrogenation of the formed propene is significantly suppressed,owing to the large barrier on Pt-Nvac.The current work demonstrates that the catalytic properties of supported single Pt atoms can be tuned by rationally depositing them on a boron nitride nanosheet and highlights the great potential of single-atom catalysis in the PDH reaction. 展开更多
关键词 PROPANE Direct dehydrogenation Platinum boron nitride Single atom catalysis Density functional theory Electronic metel-support interaction
下载PDF
Hexagonal boron nitride:A metal-free catalyst for deep oxidative desulfurization of fuel oils 被引量:7
20
作者 Peiwen Wu Linjie Lu +7 位作者 Jing He Linlin Chen Yanhong Chao Minqiang He Fengxia Zhu Xiaozhong Chu Huaming Li Wenshuai Zhu 《Green Energy & Environment》 SCIE CSCD 2020年第2期166-172,共7页
Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their h... Oxidative desulfurization(ODS)has been proved to be an efficient strategy for the production of clean fuel oil.Numerous metal-based materials have been employed as excellent ODS catalysts,but being hindered by their high-cost and potential secondary pollution.In this work,we employed graphene analogous hexagonal boron nitride(h-BN)as a metal-free catalyst for ODS with hydrogen peroxide(H2O2)as the oxidant.The h-BN catalyst was characterized and proved to be a few-layered structure with relatively high specific surface areas.The h-BN catalyst showed a 99.4%of sulfur removal in fuel oil under the optimized reaction conditions.Besides,the h-BN can be recycled for 8 times without significant decrease in the catalytic performance.Detailed mechanism analysis found that it is the boron radicals in h-BN activated H2O2 to generate·OH species,which can readily oxidize sulfides to corresponding sulfones for separation.This work would provide another choice in choosing metal-free catalysts for ODS. 展开更多
关键词 boron nitride METAL-FREE OXIDATION Deep desulfurization Fuel oils
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部