Poly (acrylonitrile-co-vinyl acetate)/polypyrrole composite particles with uniform size and morphology have been synthesized using one-step polymerization that involves swelling and coating of polypyrrole (PPy) into P...Poly (acrylonitrile-co-vinyl acetate)/polypyrrole composite particles with uniform size and morphology have been synthesized using one-step polymerization that involves swelling and coating of polypyrrole (PPy) into P (AN-co-VAc) latex nanoparticles. As an initial stage, free radical copolymerization of acrylonitrile (AN) and vinyl acetate (VAc) was synthesized by emulsion polymerization using ammonium persulfate (APS) and dodecyl benzene sulfonic acid salt (DBSA) as a surfactant. P (AN-co-VAc)/PPy composites were obtained first time by in situ addition of the pyrrole into the reaction medium. The electrospun P (AN-co-VAc)/PPy nanofibers were obtained from the nanoparticles with better properties and the effect of PPy on the morphology of nanofibers was studied by scanning electron microscopy (SEM). High degree of homogeneity and molecular order induced by molecular dispersion of polypyrrole on copolymer matrix without phase separation improve the transport properties and stability of polypyrrole, which are critical for high-performance organic electronics.展开更多
Graphite oxide, a pseudo-two-dimensional solid in bulk form, was synthesized from natural graphite powder by oxidization with KMnO4 in concentrated H2SO4. The poly(vinyl acetate)-intercalated graphite oxide nano-compo...Graphite oxide, a pseudo-two-dimensional solid in bulk form, was synthesized from natural graphite powder by oxidization with KMnO4 in concentrated H2SO4. The poly(vinyl acetate)-intercalated graphite oxide nano-composite was prepared by an in situ intercalative polymerization reaction, in which n-octanol-graphite oxide intercalation compounds were first obtained, vinyl acetate monomer was then dispersed into the interlayer of modified graphite oxide, followed by thermal polymerization of the monomer. It was experimentally shown that the c-axis space of poly(vinyl acetate)-intercalated graphite oxide was increased to 0.115 nm, which suggested there existed a monolayer of poly(vinyl acetate) chain between the layers of graphite oxide. The nanocomposite was also characterized with thermal analysis and FT-IR spectrometry.展开更多
Because the large areas of Iran are on arid and semiarid belt of the world, it has many problems due to windstorms. Wind storms cause dust and haze due to a mass of fine sand or silt soil elevated in the atmosphere. I...Because the large areas of Iran are on arid and semiarid belt of the world, it has many problems due to windstorms. Wind storms cause dust and haze due to a mass of fine sand or silt soil elevated in the atmosphere. It makes heart disease-cardiovascular and respiratory and so is detrimental for the children. These have plagued the residents and so lives of them are disrupted every so often. In this research, the subject soil stabilization using adherence of poly vinyl acetate polymer as a way to reduce the production of dust is defined for prone area. In this paper, the effect of poly vinyl acetate polymer on silt soil has been studied. In this study the samples were uncompacted particles of soil with different amount of water-solvated polymer (0, 5, 10, 15, 20, 25, 30 grams per meter squared) poured over them. These samples are kept in experimental environment for 7 days. After ensuring complete dryness, their stabilities are tested against wind flow with 20 m/s speed. Results showed that adding more polymers to soil would considerably increase its particles’ stabilities. This stability is due to positive reaction of polymer with soil particles. The effect of this stability is maintained during sample drying time in the lab and the soil maintains its characteristics during testing. The best results are obtained for 20 grams polymer per meter squared, where caused an increase in stability to about 15 times that of the soil without polymer.展开更多
Poly(vinyl acetate)(PVAc) was grafted onto wheat straw by γ-irradiation to improve the compatibility between wheat straw and high-density polyethelene(PE).The grafting was proved by Fourier transform infrared(FTIR) s...Poly(vinyl acetate)(PVAc) was grafted onto wheat straw by γ-irradiation to improve the compatibility between wheat straw and high-density polyethelene(PE).The grafting was proved by Fourier transform infrared(FTIR) spectroscopy. The compact structure of wheat straw was loosened because the chemical bonds and crystalline structure were destructed by the γ-rays. The modified wheat straw needed less energy for thermal transition, as revealed by differential scanning calorimetry(DSC).Thermal analysis revealed that grafted PVAc acted as a protective barrier for the wheat straw and leads to an increase in maximum pyrolysis temperature. The crystallite size of grafted wheat straw decreased to 5.33 nm from 5.63 nm before irradiation. There were holes in melted form appeared on the surface of the grafted wheat straws.Both the grafted PVAc and irradiation are beneficial to lower the torque of wheat straw/PE melts and improve its mechanical properties by 36%. Possible mechanism of irradiation grafting was proposed.展开更多
Compatibility of poly (vinyl acetate) (PVAc) with poly (methyl methacrylate) (PMMA) mixtures has been studied by using nuclear magnetic relaxation, differential scanning calorimeter and small-angle X-ray scattering te...Compatibility of poly (vinyl acetate) (PVAc) with poly (methyl methacrylate) (PMMA) mixtures has been studied by using nuclear magnetic relaxation, differential scanning calorimeter and small-angle X-ray scattering techniques. The nuclear magnetic relaxation time T_1's were measured as a function of composition in blends of PMMA and PVAc prepared from chloroform solution. The results show that the system is miscible for casting from chloroform solution.展开更多
Three poly(vinyl acetate)(PVAc)oligomers with controlled molecular weight and narrow molecular distribution are synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization.The effects of the re...Three poly(vinyl acetate)(PVAc)oligomers with controlled molecular weight and narrow molecular distribution are synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization.The effects of the reaction temperature and the added amount of initiator of the PVAc polymerization are discussed.In addition,the phase behavior of the prepared PVAc in pressured CO2 is determined via the cloud point method.The results indicate that the cloud point of PVAc increases with the increase in the molecular weight,the PVAc concentration,and the temperature.The cloud point pressures for the PVAc mass concentration of 0.12%with the molecular weight of 1 550,2 120,and 2 960 g/mol are 13.48,13.83 and 15.43 MPa,respectively,at the temperature of 35℃.It reveals that the solubility of PVAc in ScCO2 at relatively low pressure is remarkably limited.展开更多
Poly(vinyl alcohol)(PVA)has been widely used in industrial and consumer products.In this study,we aimed to address this challenge by synthesizing well-defined multiarm poly(vinyl acetate)(PVAc)through the use of nonhy...Poly(vinyl alcohol)(PVA)has been widely used in industrial and consumer products.In this study,we aimed to address this challenge by synthesizing well-defined multiarm poly(vinyl acetate)(PVAc)through the use of nonhydrolyzable vinyl ethertype multifunctional RAFT agents.The control over molecular weights was achieved by the RAFT process to afford polymers with dominant head-to-head linkages at the terminal.Especially,quantitative end-functionalization of the synthesized PVAc was performed using Michael thiol−ene or disulfide exchange reactions.Consequently,saponification of the PVAc enabled the synthesis of end-functionalized multiarm PVA in an efficient manner.This straightforward approach afforded well-defined functional PVAs,which enable further chemical modification,thus widening the utility of PVA in a range of applications,such as precisely controlled network synthesis and bioconjugation.展开更多
文摘Poly (acrylonitrile-co-vinyl acetate)/polypyrrole composite particles with uniform size and morphology have been synthesized using one-step polymerization that involves swelling and coating of polypyrrole (PPy) into P (AN-co-VAc) latex nanoparticles. As an initial stage, free radical copolymerization of acrylonitrile (AN) and vinyl acetate (VAc) was synthesized by emulsion polymerization using ammonium persulfate (APS) and dodecyl benzene sulfonic acid salt (DBSA) as a surfactant. P (AN-co-VAc)/PPy composites were obtained first time by in situ addition of the pyrrole into the reaction medium. The electrospun P (AN-co-VAc)/PPy nanofibers were obtained from the nanoparticles with better properties and the effect of PPy on the morphology of nanofibers was studied by scanning electron microscopy (SEM). High degree of homogeneity and molecular order induced by molecular dispersion of polypyrrole on copolymer matrix without phase separation improve the transport properties and stability of polypyrrole, which are critical for high-performance organic electronics.
基金Financial support from Key Project of The National Natural Science Foundation of China (No. 59836230) is gratefully acknowledged.
文摘Graphite oxide, a pseudo-two-dimensional solid in bulk form, was synthesized from natural graphite powder by oxidization with KMnO4 in concentrated H2SO4. The poly(vinyl acetate)-intercalated graphite oxide nano-composite was prepared by an in situ intercalative polymerization reaction, in which n-octanol-graphite oxide intercalation compounds were first obtained, vinyl acetate monomer was then dispersed into the interlayer of modified graphite oxide, followed by thermal polymerization of the monomer. It was experimentally shown that the c-axis space of poly(vinyl acetate)-intercalated graphite oxide was increased to 0.115 nm, which suggested there existed a monolayer of poly(vinyl acetate) chain between the layers of graphite oxide. The nanocomposite was also characterized with thermal analysis and FT-IR spectrometry.
文摘Because the large areas of Iran are on arid and semiarid belt of the world, it has many problems due to windstorms. Wind storms cause dust and haze due to a mass of fine sand or silt soil elevated in the atmosphere. It makes heart disease-cardiovascular and respiratory and so is detrimental for the children. These have plagued the residents and so lives of them are disrupted every so often. In this research, the subject soil stabilization using adherence of poly vinyl acetate polymer as a way to reduce the production of dust is defined for prone area. In this paper, the effect of poly vinyl acetate polymer on silt soil has been studied. In this study the samples were uncompacted particles of soil with different amount of water-solvated polymer (0, 5, 10, 15, 20, 25, 30 grams per meter squared) poured over them. These samples are kept in experimental environment for 7 days. After ensuring complete dryness, their stabilities are tested against wind flow with 20 m/s speed. Results showed that adding more polymers to soil would considerably increase its particles’ stabilities. This stability is due to positive reaction of polymer with soil particles. The effect of this stability is maintained during sample drying time in the lab and the soil maintains its characteristics during testing. The best results are obtained for 20 grams polymer per meter squared, where caused an increase in stability to about 15 times that of the soil without polymer.
基金supported by the National Natural Science Foundation of China(No.11605077)the Free Exploration Project for Youth Research of Jiangsu Academy of Agricultural Sciences(No.ZX(15)4012)
文摘Poly(vinyl acetate)(PVAc) was grafted onto wheat straw by γ-irradiation to improve the compatibility between wheat straw and high-density polyethelene(PE).The grafting was proved by Fourier transform infrared(FTIR) spectroscopy. The compact structure of wheat straw was loosened because the chemical bonds and crystalline structure were destructed by the γ-rays. The modified wheat straw needed less energy for thermal transition, as revealed by differential scanning calorimetry(DSC).Thermal analysis revealed that grafted PVAc acted as a protective barrier for the wheat straw and leads to an increase in maximum pyrolysis temperature. The crystallite size of grafted wheat straw decreased to 5.33 nm from 5.63 nm before irradiation. There were holes in melted form appeared on the surface of the grafted wheat straws.Both the grafted PVAc and irradiation are beneficial to lower the torque of wheat straw/PE melts and improve its mechanical properties by 36%. Possible mechanism of irradiation grafting was proposed.
文摘Compatibility of poly (vinyl acetate) (PVAc) with poly (methyl methacrylate) (PMMA) mixtures has been studied by using nuclear magnetic relaxation, differential scanning calorimeter and small-angle X-ray scattering techniques. The nuclear magnetic relaxation time T_1's were measured as a function of composition in blends of PMMA and PVAc prepared from chloroform solution. The results show that the system is miscible for casting from chloroform solution.
基金The Natural Science Foundation of Jiangsu Province(No.BK20130602)the Applied Basic Research Program of Suzhou(No.SYG201836)the Project of the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Three poly(vinyl acetate)(PVAc)oligomers with controlled molecular weight and narrow molecular distribution are synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization.The effects of the reaction temperature and the added amount of initiator of the PVAc polymerization are discussed.In addition,the phase behavior of the prepared PVAc in pressured CO2 is determined via the cloud point method.The results indicate that the cloud point of PVAc increases with the increase in the molecular weight,the PVAc concentration,and the temperature.The cloud point pressures for the PVAc mass concentration of 0.12%with the molecular weight of 1 550,2 120,and 2 960 g/mol are 13.48,13.83 and 15.43 MPa,respectively,at the temperature of 35℃.It reveals that the solubility of PVAc in ScCO2 at relatively low pressure is remarkably limited.
文摘Poly(vinyl alcohol)(PVA)has been widely used in industrial and consumer products.In this study,we aimed to address this challenge by synthesizing well-defined multiarm poly(vinyl acetate)(PVAc)through the use of nonhydrolyzable vinyl ethertype multifunctional RAFT agents.The control over molecular weights was achieved by the RAFT process to afford polymers with dominant head-to-head linkages at the terminal.Especially,quantitative end-functionalization of the synthesized PVAc was performed using Michael thiol−ene or disulfide exchange reactions.Consequently,saponification of the PVAc enabled the synthesis of end-functionalized multiarm PVA in an efficient manner.This straightforward approach afforded well-defined functional PVAs,which enable further chemical modification,thus widening the utility of PVA in a range of applications,such as precisely controlled network synthesis and bioconjugation.