期刊文献+
共找到112,372篇文章
< 1 2 250 >
每页显示 20 50 100
Optimization of inter-seasonal nitrogen allocation increases yield and resource-use efficiency in a water-limited wheat-maize cropping system in the North China Plain
1
作者 Xiaonan Zhou Chenghang Du +7 位作者 Haoran Li Zhencai Sun Yifei Chen Zhiqiang Gao Zhigan Zhao Yinghua Zhang Zhimin Wang Ying Liu 《The Crop Journal》 SCIE CSCD 2024年第3期907-914,共8页
Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai... Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system. 展开更多
关键词 Cropping system Water-saving irrigation North China Plain nitrogen optimization Sustainable intensification
下载PDF
Biomass and nutrients allocation in pot cultured beech seedlings:influence of nitrogen fertilizer 被引量:3
2
作者 Ali Bagherzadeh Rainer Brumme Friedrich Beese 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期263-270,共8页
Allocation of biomass and nutrient elements including Nitrogen to above and belowground compartments of beech seedlings (Fagus sylvatica L.) treated by labeled nitrogen fertilizer in the form of 15NH4 and 15NO3 were... Allocation of biomass and nutrient elements including Nitrogen to above and belowground compartments of beech seedlings (Fagus sylvatica L.) treated by labeled nitrogen fertilizer in the form of 15NH4 and 15NO3 were investigated at the end of two successive growing seasons. Pot cultured beech seedlings were grown at a green house on intact soil cores sampled from three adjacent stands including beech, Norway spruce and mixed beech-spruce cultures of Soiling forest, Germany. Comparing biomass allocation and nutrients concentrations of the seedlings between the control and 15N-fertilized treatments revealed no significant effect of N fertilization on nutrients uptake by seedlings over the experiment. The form of N input influenced its movement into plant pools. It was demonstrated that beech seedlings take up nitrogen mainly in the form of nitrate, which is then reduced in the leaves, although the differences between the retention of NO3^--N and NH4^+-N in plants were not statistically significant. Percent recoveries of 15N in trees were typically greater after 15NO3 than after 15NH4 additions. It was indicated that immobilization of ~SN tracer in fine roots was a slower process comparing other plant compartments such as stem and coarse roots, but a powerful sink for N during the course of study. 展开更多
关键词 beech seedling nitrogen fertilizer BIOMASS nitrogen immobilization nutrient MYCORRHIZA
下载PDF
Carbon and nitrogen allocations in corn grown in Central and Northeast China: different responses to fertilization treatments 被引量:3
3
作者 MIAO Hui-tian Lü Jia-long +4 位作者 XU Ming-gang ZHANG Wen-ju HUANG Shao-min PENG Chang CHEN Li-ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第6期1212-1221,共10页
In order to reveal the impact of various fertilization strategies on carbon(C) and nitrogen(N) accumulation and allocation in corn(Zea mays L.), corn was grown in the fields where continuous fertilization manage... In order to reveal the impact of various fertilization strategies on carbon(C) and nitrogen(N) accumulation and allocation in corn(Zea mays L.), corn was grown in the fields where continuous fertilization management had been lasted about 18 years at two sites located in Central and Northeast China(Zhengzhou and Gongzhuling), and biomass C and N contents in different organs of corn at harvest were analyzed. The fertilization treatments included non-fertilizer(control), chemical fertilizers of either nitrogen(N), or nitrogen and phosphorus(NP), or phosphorus and potassium(PK), or nitrogen, phosphorus and potassium(NPK), NPK plus manure(NPKM), 150% of the NPKM(1.5NPKM), and NPK plus straw(NPKS). The results showed that accumulated C in aboveground ranged from 2 550–5 630 kg ha^–1 in the control treatment to 9 300–9 610 kg ha^–1 in the NPKM treatment, of which 57–67% and 43–50% were allocated in the non-grain organs, respectively. Accumulated N in aboveground ranged from 44.8–55.2 kg ha^-1 in the control treatment to 211–222 kg ha^–1 in the NPKM treatment, of which 35–48% and 33–44% were allocated in the non-grain parts, respectively. C allocated to stem and leaf for the PK treatment was 65 and 49% higher than that for the NPKM treatment at the both sites, respectively, while N allocated to the organs for the PK treatment was 18 and 6% higher than that for the NPKM treatment, respectively. This study demonstrated that responses of C and N allocation in corn to fertilization strategies were different, and C allocation was more sensitive to fertilization treatments than N allocation in the area. 展开更多
关键词 fertilization allocation Northeast phosphorus fertilizers potassium organs ranged accumulated allocated
下载PDF
Nitrogen retranslocation, allocation, and utilization in bare root Larix olgensis seedlings
4
作者 WEI Hong.xu·XU Cheng-yang · MA Lii-yi · DUAN Jie 《Journal of Forestry Research》 SCIE CAS CSCD 2012年第1期87-94,共8页
We quantified biomass accumulation and nitrogen (N) re- translocation, allocation, and utilization of Changbai larch (Larix olgen- sis) seedlings subjected to four fertilization treatments (24, 59, 81, 117 kg.ha-... We quantified biomass accumulation and nitrogen (N) re- translocation, allocation, and utilization of Changbai larch (Larix olgen- sis) seedlings subjected to four fertilization treatments (24, 59, 81, 117 kg.ha-1 N) with an unfertilized control during summer and autumn 2009. Ammonium phosphate (18-46-0) was the fertilizer used in all treatments. On both sampling dates, the needles had greater biomass and N content than new (2009) stems and old (2008) stems, and coarse, medium and fine roots (diameters of 〉5, 2-5 mm, and 0-2 mm, respectively). Higher N concentration was observed in old stems and coarse roots than that in new stems and medium roots. In mid-summer, fine roots had higher N concentration than coarse roots. The treatment with 24 kg.ha1 N had the greatest biomass and N content in needles and old stems, and highest net N retranslocation (NRA) and amount of N derived from soil. On Sep- tember 21, no N translocation was observed, while the treatment with 24 kg.ha^-1 N had the highest N utilization efficiency and fertilizer efficiency. Vector analysis revealed that all four fertilization treatments induced Nexcess relative to the control. The treatments with 59, 81, 117 kg.ha^-1 N induce N excess compared with treatments at 24 kg.ha-1 N. We conclude that the traditional local fertilizer application rates exceeded N require- ments and N uptake ability for Changbai larch seedlings. The application rate of 24 kg.ha^-1 N is recommended. 展开更多
关键词 Larix olgensis nitrogen RETRANSLOCATION allocation bio-mass Vector analysis
下载PDF
Increased dependence on nitrogen-fixation of a native legume in competition with an invasive plant 被引量:1
5
作者 Meixu Han Haiyang Zhang +12 位作者 Mingchao Liu Jinqi Tang Xiaocheng Guo Weizheng Ren Yong Zhao Qingpei Yang Binglin Guo Qinwen Han Yulong Feng Zhipei Feng Honghui Wu Xitian Yang Deliang Kong 《Plant Diversity》 SCIE CAS CSCD 2024年第4期510-518,共9页
Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native ... Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions. 展开更多
关键词 Mycorrhizal strategy nitrogen depletion Plant invasion Root nutrient acquisition strategy Symbiotic nitrogen fixation
下载PDF
Tradeoffs of nitrogen investment between leaf resorption and photosynthesis across soil fertility in Quercus mongolica seedlings during the hardening period
6
作者 Zexia Dong Jiaxi Wang +5 位作者 Jingfei Chen Guolei Li Yong Liu Yining Li Yufan Zhu Xiaoqian Meng 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第6期185-197,共13页
The most important process before leaf senescence is nutrient resorption,which reduces nutrient loss and maximizes plant fitness during the subsequent growth period.However,plants must retain certain levels of nitroge... The most important process before leaf senescence is nutrient resorption,which reduces nutrient loss and maximizes plant fitness during the subsequent growth period.However,plants must retain certain levels of nitrogen(N)in their leaves to maintain carbon assimilation during hardening.The objective of this study was to investigate the tradeoffs in N investment between leaf N resorption and N for photosynthesis in seedlings with increased soil fertility during the hardening period.A field experiment was conducted to determine if and how soil fertility treatments(17,34,or 68 mg N seedling−1)affected N resorption and allocation to the photosynthetic apparatus in Quercus mongolica leaves during the hardening period.Seedlings were sampled at T1(after terminal bud formation),T2(between terminal bud formation and end of the growing period),and T3(at the end of the growing period).Results showed that photosynthetic N content continued to rise in T2,while N resorption started from non-photosynthetic N.Leaf N allocation to the photosynthetic apparatus increased as soil fertility increased,delaying N resorption.Additionally,soil fertility significantly affected N partitioning among different photosynthetic components,maintaining or increasing photosynthetic traits during senescence.This study demonstrates a tradeoff in N investment between resorption and photosynthesis to maintain photosynthetic assimilation capacity during the hardening period,and that soil fertility impacts this balance.Q.mongolica leaves primarily resorbed N from the non-photosynthetic apparatus and invested it in the photosynthetic apparatus,whereas different photosynthetic N component allocations effectively improved this pattern. 展开更多
关键词 nitrogen resorption nitrogen allocation Photosynthetic components Quercus mongolica
下载PDF
ZmbZIP27 regulates nitrogen-mediated leaf angle by modulating lignin deposition in maize 被引量:1
7
作者 Huan Chen Xiaoping Gong +3 位作者 Yu Guo Jingjuan Yu Wen-Xue Li Qingguo Du 《The Crop Journal》 SCIE CSCD 2024年第5期1404-1413,共10页
In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N ... In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize. 展开更多
关键词 MAIZE nitrogen Leaf angle Ligular region Lignin deposition
下载PDF
Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation 被引量:1
8
作者 Hengyuan Liu Xingjiang Wu +2 位作者 Yuhao Geng Xin Li Jianhong Xu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期544-555,共12页
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-... Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field. 展开更多
关键词 Iridium nanodots CARBON Microfluidic technology Efficient synthesis Electrocatalytic nitrogen fixation
下载PDF
Regulation of 2-acetyl-1-pyrroline and grain quality in early-season indica fragrant rice by nitrogen and silicon fertilization under different plantation methods 被引量:1
9
作者 Yongjian Chen Lan Dai +7 位作者 Siren Cheng Yong Ren Huizi Deng Xinyi Wang Yuzhan Li Xiangru Tang Zaiman Wang Zhaowen Mo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期511-535,共25页
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag... Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments. 展开更多
关键词 fragrant rice 2-AP content head rice yield mechanical planting nitrogen silicon
下载PDF
Identification of the lysine and histidine transporter family in Camellia sinensis and the characterizations in nitrogen utilization 被引量:1
10
作者 Wei Huang Danni Ma +9 位作者 Fawad Zaman Xulei Hao Li Xia E Zhang Pu Wang Mingle Wang Fei Guo Yu Wang Dejiang Ni Hua Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期273-287,共15页
In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen wit... In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants. 展开更多
关键词 Camellia sinensis nitrogen Lysine and histidine transporter(LHT)family
下载PDF
Composition Engineering Opens an Avenue Toward Efficient and Sustainable Nitrogen Fixation 被引量:1
11
作者 Xiaolin Wang Liming Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期313-325,共13页
In this work,we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active ... In this work,we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active sites as exemplified by diatomic metals anchored graphdiyne via the combination of hierarchical high-throughput screening,first-principles calculations,and molecular dynamics simulations.Totally 43 highly efficient catalysts feature ultralow onset potentials(|U_(onset)|≤0.40 V)with Rh-Hf and Rh-Ta showing negligible onset potentials of 0 and-0.04 V,respectively.Extremely high catalytic activities of Rh-Hf and Rh-Ta can be ascribed to the synergistic effects.When forming heteronuclears,the combinations of relatively weak(such as Rh)and relatively strong(such as Hf or Ta)components usually lead to the optimal strengths of adsorption Gibbs free energies of reaction intermediates.The origin can be ascribed to the mediate d-band centers of Rh-Hf and Rh-Ta,which lead to the optimal adsorption strengths of intermediates,thereby bringing the high catalytic activities.Our work provides a new and general strategy toward the architecture of highly efficient catalysts not only for electrocatalytic nitrogen reduction reaction(eNRR)but also for other important reactions.We expect that our work will boost both experimental and theoretical efforts in this direction. 展开更多
关键词 composition engineering strategy diatomic catalysts electrocatalytic nitrogen reduction reaction first-principles calculations graphdiyne hierarchical high-throughput screening synergistic effects
下载PDF
Strategies to achieve effective nitrogen activation
12
作者 Bin Chang Huabin Zhang +1 位作者 Shuhui Sun Gaixia Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期137-163,共27页
Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few... Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few years.Although some achievements have been revealed in aqueous NRR,significant challenges have also been identified.The activity and selectivity are fundamentally limited by nitrogen activation and competitive hydrogen evolution.This review focuses on the hurdles of nitrogen activation and delves into complementary strategies,including materials design and system optimization(reactor,electrolyte,and mediator).Then,it introduces advanced interdisciplinary technologies that have recently emerged for nitrogen activation using high-energy physics such as plasma and triboelectrification.With a better understanding of the corresponding reaction mechanisms in the coming years,these technologies have the potential to be extended in further applications.This review provides further insight into the reaction mechanisms of selectivity and stability of different reaction systems.We then recommend a rigorous and detailed protocol for investigating NRR performance and also highlight several potential research directions in this exciting field,coupling with advanced interdisciplinary applications,in situ/operando characterizations,and theoretical calculations. 展开更多
关键词 activation via mediators catalyst optimization electrochemical nitrogen fixation high-energy activation of nitrogen nitrogen
下载PDF
Nitrogen rhizodeposition from corn and soybean,and its contribution to the subsequent wheat crops
13
作者 Sainan Geng Lantao Li +6 位作者 Yuhong Miao Yinjie Zhang Xiaona Yu Duo Zhang Qirui Yang Xiao Zhang Yilun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2446-2457,共12页
Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.Ho... Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized. 展开更多
关键词 crop rotation nitrogen rhizodeposition meta-analysis soil aggregates nitrogen transfer
下载PDF
An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings
14
作者 Gaozhao Wu Xingyu Chen +9 位作者 Yuguang Zang Ying Ye Xiaoqing Qian Weiyang Zhang Hao Zhang Lijun Liu Zujian Zhang Zhiqin Wang Junfei Gu Jianchang Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2605-2617,共13页
Modern rice production faces the dual challenges of increasing grain yields while reducing inputs of chemical fertilizer.However,the disequilibrium between the nitrogen(N)supplement from the soil and the demand for N ... Modern rice production faces the dual challenges of increasing grain yields while reducing inputs of chemical fertilizer.However,the disequilibrium between the nitrogen(N)supplement from the soil and the demand for N of plants is a serious obstacle to achieving these goals.Plant-based diagnosis can help farmers make better choices regarding the timing and amount of topdressing N fertilizer.Our objective was to evaluate a non-destructive assessment of rice N demands based on the relative SPAD value(RSPAD)due to leaf positional differences.In this study,two field experiments were conducted,including a field experiment of different N rates(Exp.I)and an experiment to evaluate the new strategy of nitrogen-split application based on RSPAD(Exp.II).The results showed that higher N inputs significantly increased grain yield in modern high yielding super rice,but at the expense of lower nitrogen use efficiency(NUE).The N nutrition index(NNI)can adequately differentiate situations of excessive,optimal,and insufficient N nutrition in rice,and the optimal N rate for modern high yielding rice is higher than conventional cultivars.The RSPAD is calculated as the SPAD value of the top fully expanded leaf vs.the value of the third leaf,which takes into account the non-uniform N distribution within a canopy.The RSPAD can be used as an indicator for higher yield and NUE,and guide better management of N fertilizer application.Furthermore,we developed a new strategy of nitrogen-split application based on RSPAD,in which the N rate was reduced by 18.7%,yield was increased by 1.7%,and the agronomic N use efficiency was increased by 27.8%,when compared with standard farmers'practices.This strategy of N fertilization shows great potential for ensuring high yielding and improving NUE at lower N inputs. 展开更多
关键词 CANOPY crop management practices nitrogen nitrogen nutrition index rice SPAD
下载PDF
Isotope constraints on seasonal dynamics of nitrogen in Zhanjiang Bay, a typical mariculture bay in South China
15
作者 Chunqing Chen Qibin Lao +3 位作者 Fajin Chen Guangzhe Jin Jiacheng Li Qingmei Zhu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期60-70,共11页
Eutrophication in coastal waters has been increasing remarkably,severely impacting the water quality in mariculture bays.In this study,we conducted multiple isotopic measurements on suspended particulate nitrogen(δ^(... Eutrophication in coastal waters has been increasing remarkably,severely impacting the water quality in mariculture bays.In this study,we conducted multiple isotopic measurements on suspended particulate nitrogen(δ^(15)N-PN) and dissolved nitrate(δ^(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)) in Zhanjiang Bay,a typical mariculture bay with a high level of eutrophication in South China,to investigate the changes in nitrogen sources and their cycling between the rainy and dry seasons.During the rainy season,the study found no significant relation between δ^(15)NPN and δ^(15)N-NO_(3)^(-)due to the impact of heavy rainfall and terrestrial erosion.In the upper bay,a slight nitrate loss and slightly higher δ_(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)values were observed,attributed to intense physical sedimentwater interactions.Despite some fluctuations,nitrate concentrations in the lower bay mainly aligned with the theoretical mixing line during the rainy season,suggesting that nitrate was primarily influenced by terrestrial erosion and that nitrate isotopes resembled the source.Consequently,the isotopic values of nitrate can be used for source apportionment in the rainy season.The results indicated that soil nitrogen(36%) and manure and sewage(33%) were the predominant nitrogen sources contributing to nitrogen loads during this period.In contrast,the dry season saw a deficient ammonium concentration(<0.2 μmol/L) in the bay,due to nearly complete consumption by phytoplankton during the red tide period.Additionally,the significant loss of nitrate and simultaneous increase in the stable isotopes of dissolved and particulate nitrogen suggest a strong coupling of assimilation and mineralization during the dry season.More active biogeochemical processes during the dry season may be related to decreased runoff and increased water retention time.Overall,our study illustrated the major seasonal nitrogen sources and their dynamics in Zhanjiang B ay,providing valuable insights for formulating effective policies to mitigate eutrophication in mariculture bays. 展开更多
关键词 nitrogen stable nitrogen isotopes biogeochemical processes EUTROPHICATION Zhanjiang Bay
下载PDF
Influence of nitrogen status on fermentation performances of non-Saccharomyces yeasts:a review
16
作者 Jinchen Li Mengmeng Yuan +3 位作者 Nan Meng Hehe Li Jinyuan Sun Baoguo Sun 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期556-567,共12页
Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances inclu... Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research. 展开更多
关键词 Non-Saccharomyces yeasts nitrogen Fermentation kinetics nitrogen preference Wine aroma
下载PDF
Tracing nitrate sources in one of the world's largest eutrophicated bays(Hangzhou Bay):insights from nitrogen and oxygen isotopes
17
作者 Zhi Yang Jianfang Chen +6 位作者 Haiyan Jin Hongliang Li Zhongqiang Ji Yangjie Li Bin Wang Zhenyi Cao Qianna Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期86-95,共10页
Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributi... Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019. 展开更多
关键词 nitrogen isotopes oxygen isotopes nitrogen cycle nitrate sources Hangzhou Bay
下载PDF
Geographical Distribution of Atmospheric Nitrogen Deposition in China and Its Response to Emission Control Policy
18
作者 WEN Zhang YU Ziyin +7 位作者 SI Ruotong XU Wen WANG Kai LIU Lei TANG Aohan ZHANG Fusuo KEITH Goulding LIU Xuejun 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1017-1031,共15页
Atmospheric nitrogen(N)deposition has experienced significant change because of anthropogenic emissions,thereby exerting a pronounced impact on global ecosystem services.With the rapid development of industry and agri... Atmospheric nitrogen(N)deposition has experienced significant change because of anthropogenic emissions,thereby exerting a pronounced impact on global ecosystem services.With the rapid development of industry and agriculture and the swift expansion of urban areas in China since the 1980s,reactive nitrogen(Nr)emissions and N deposition have substantially increased.In pursuit of im-proving air quality,China has implemented a series of environmental protection policies and undertaken diverse measures to reduce pol-lutant emissions.This paper is a review of multivariate data sources of atmospheric N deposition based on the results of literature from 1980 to 2023,and the original data from 1980 to 2020 are summarized,counted and calculated.The main findings are as follows:1)the annual average atmospheric N deposition ranged from approximately 20-40 kg/(ha·yr),with the variability primarily linked to different assessment methods;2)regional disparities were evident in the spatial distribution of N deposition,with elevated values concentrated in areas with intense Nr emissions;3)atmospheric N deposition significantly declined after 2010,particularly the deposition of oxidized N,while reduced N deposition remained stable.These results reflect the effects of China's serious control policies on nitrogen oxide(NO.)emissions and strengthen the importance of agricultural NH3 emission mitigation.This study contributes to a comprehensive understanding of the N dynamics in the emission-deposition process,and provides a scientific foundation for the research of environmental protection,climate change,and sustainable development. 展开更多
关键词 nitrogen deposition emission-deposition relationship reactive nitrogen hotspots emission control policy China
下载PDF
Plant Nitrogen Metabolism: Balancing Resilience to Nutritional Stress andAbiotic Challenges
19
作者 Muhammad Farhan Manda Sathish +10 位作者 Rafia Kiran Aroosa Mushtaq Alaa Baazeem Ammarah Hasnain Fahad Hakim Syed Atif Hasan Naqvi Mustansar Mubeen Yasir Iftikhar Aqleem Abbas Muhammad Zeeshan Hassan Mahmoud Moustafa 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期581-609,共29页
Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unvei... Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture. 展开更多
关键词 Synthetic nitrogen nitrogen signaling sustainable agriculture EUTROPHICATION AMMONIUM NITRATE
下载PDF
Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system
20
作者 Ningning Yu Bingshuo Wang +3 位作者 Baizhao Ren Bin Zhao Peng Liu Jiwang Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3610-3621,共12页
The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ... The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize. 展开更多
关键词 integrated agronomic practice management water footprints nitrogen footprints water use efficiency nitrogen use efficiency yield
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部