Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feedi...Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability.展开更多
The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence...The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.展开更多
[Objectives] This study was conducted to solve the prominent problems in the treatment of domestic sewage in southern rural areas of China. [Methods] An integrated process treatment mode of anaerobic/anoxic/aerobic mo...[Objectives] This study was conducted to solve the prominent problems in the treatment of domestic sewage in southern rural areas of China. [Methods] An integrated process treatment mode of anaerobic/anoxic/aerobic moving bed biofilm reactor (A 2O-MBBR) was proposed to analyze and study its operating effect and influencing factors. [Results] The A^(2)O-MBBR mode had good COD removal efficiency and nitrogen and phosphorus removal performance, and the water quality index of the effluent met the Class A standard of GB181918-2002. This mode is suitable for treating rural domestic sewage, and has high treatment effects in different operating periods. In spring, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS reached (83.53 ± 2.15)%, (89.44 ± 4.97)%, (67.36±18.53)%, (88.22±11.21)% and (91.73±2.25)%, respectively;In the autumn period, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS were (83.49±2.64)%, (89.26±9.19)%, (66.05±17.00)%, (87.48±9.68)%, and (91.13±2.35)%. [Conclusions] This study provides theoretical reference and technical support for the popularization and application of A^(2)O-MBBR integrated process.展开更多
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was...To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.展开更多
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobi...A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.展开更多
Effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by DPB sludge was systematically studied using batch experiments, at the same time the variation of ORP was investigated. ...Effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by DPB sludge was systematically studied using batch experiments, at the same time the variation of ORP was investigated. Results showed that the denitrifying and phosphorus uptake rate in anoxic phase increased with the high initial anaerobic carbon source addition. However once the initial COD concentration reached a certain level, which was in excess to the PHB saturation of poly-P bacteria, residual COD carried over to anoxic phase inhibited the subsequent denitrifying phosphorus uptake. Simultaneously, phosphate uptake continued until all nitrate was removed, following a slow endogenous release of phosphate. High nitrate concentration in anoxic phase increased the initial denitrifying phosphorus rate. Once the nitrate was exhausted, phosphate uptake changed to release. Moreover, the time of this turning point occurred later with the higher nitrate addition. On the other hand, through on-line monitoring the variation of the ORP with different initial COD concentration, it was found ORP could be used as a control parameter for phosphorus release, but it is impossible to utilize ORP for controlling the denitrificaion and anoxic phosphorus uptake operations.展开更多
This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the...This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.展开更多
A full-scale test was operated by using low dissolved oxygen activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of CODCr, TN and TP varied in a range of 35...A full-scale test was operated by using low dissolved oxygen activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of CODCr, TN and TP varied in a range of 352.9 mg/L-1338.2 mg/L, 34.4 mg/L-96.3 mg/L, and 2.21 mg/L-24.0 mg/L, the average removal efficiencies were 94.9%, 86.7% and 93.0%, respectively. During the test period of two months, effluent meas of CODCr,, BOD5, NH3-N, TN and TP were below 50 mg/L, 25 mg/L, 10 mg/L and 1.0 mg/L respectively. The low dissolved oxygen activated sludge process has a simple flow sheet, fewer facilities and high N and P removal efficiency. It is very convenient to retrofit the conventional activated sludge process with the above process.展开更多
A practice wastewater treatment plant was operated using intermittent aeration activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of COD Cr , BOD 5, T...A practice wastewater treatment plant was operated using intermittent aeration activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of COD Cr , BOD 5, TN, TP, NH 3\|N, TKN, and SS varied in a range of 207.5—1640 mg/L, 61.8—637 mg/L, 28.5—75.6 mg/L, 4.38—20.2 mg/L, 13.6—31.9 mg/L, 28.5—75.6 mg/L, and 111—1208 mg/L, the effluent means were less than 50 mg/L, 20 mg/L, 5 mg/L, 1.0 mg/L, 5 mg/L, 10 mg/L, and 20 mg/L, respectively. Based on a long time of operating results, this process is very suitable for nutrient biological removal for treating the municipal wastewater those water characteristics are similar as that of the Songjiang Municipal Waste Water Treatment Plant(SJMWTP).展开更多
A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (D...A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.展开更多
Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduce...Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.展开更多
Three parallel anaerobic-anoxic/anaerobic-aerobic (AN/AO) processes were developed to enrich denitrifying phosphorus removal bacteria (DPB) for low strength wastewater treatment. The main body of the parallel AN/A...Three parallel anaerobic-anoxic/anaerobic-aerobic (AN/AO) processes were developed to enrich denitrifying phosphorus removal bacteria (DPB) for low strength wastewater treatment. The main body of the parallel AN/AO process consists of an AN (anaerobic-anoxic) process and an AO (anaerobic-aerobic) process. In the AO process, the common phosphorus accumulating organisms (PAOs) was dominate, while in the AN process, DPB was dominate, The volume of anaerobic zone(Vana):anoxie zone(Vano) : aerobic zone (Vaer) for the parallel AN/AO process is 1:1:1 in contrast with a Vana:Vaer and Vano:Vaer of 1:2 and 1:4 for a traditional biological nutrient removal process (BNR). Process 3 excels in the 3 processes on the basis of COD, TN and TP removal. For 4 month operation, the effluent COD concentration of process 3 did not exceed 60 mg/L; the effluent TN concentration of process 3 was lower than 15 mg/L; and the effluent TP concentration of process 3 was lower than 1 mg/L.展开更多
A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrific...A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2 mg/L, and total phosphorus of 0.3 mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrifieation.展开更多
The characteristics of anaerobic phosphorus release and anoxic phosphorus uptake were investigated in sequencing batch reactors using denitrifying phosphorus removing bacteria (DPB) sludge. The lab-scale experiments...The characteristics of anaerobic phosphorus release and anoxic phosphorus uptake were investigated in sequencing batch reactors using denitrifying phosphorus removing bacteria (DPB) sludge. The lab-scale experiments were accomplished under conditions of various nitrite concentrations (5.5, 9.5, and 15 mg/L) and mixed liquor suspended solids (MLSS) (1844, 3231, and 6730 mg/L). The results obtained confirmed that nitrite, MLSS, and pH were key factors, which had a significant impact on anaerobic phosphorus release and anoxic phosphorus uptake in the biological phosphorous removal process. The nitrites were able to successfully act as electron acceptors for phosphorous uptake at a limited concentration between 5.5 and 9.5 mg/L. The denitrification and dephosphorous were inhibited when the nitrite concentration reached 15 mg/L. This observation indicated that the nitrite would not inhibit phosphorus uptake before it exceeded a threshold concentration. It was assumed that an increase of MLSS concentration from 1844 mg/L to 6730 mg/L led to the increase of denitrification and anoxic P-uptake rate. On the contrary, the average P-uptake/N denitrifying reduced from 2.10 to 1.57 mg PO4^3--P/mg NO3^--N. Therefore, it could be concluded that increasing MLSS of the DEPHANOX system might shorten the reaction time of phosphorus release and anoxic phosphorus uptake. However, excessive MLSS might reduce the specific denitrifying rate. Meanwhile, a rapid pH increase occurred at the beginning of the anoxic conditions as a result of denitrification and anoxic phosphate uptake. Anaerobic P release rate increased with an increase in pH. Moreover, when pH exceeded a relatively high value of 8.0, the dissolved P concentration decreased in the liquid phase, because of chemical precipitation. This observation suggested that pH should be strictly controlled below 8.0 to avoid chemical precipitation if the biological denitrifying phosphorus removal capability is to be studied accurately.展开更多
A laboratory-scale anaerobic-anoxic-aerobic process(A^(2)O)with a small aerobic zone and a bigger anoxic zone and biologic aerated filter(A^(2)O-BAF)system was operated to treat low carbon-to-nitrogen ratio domestic w...A laboratory-scale anaerobic-anoxic-aerobic process(A^(2)O)with a small aerobic zone and a bigger anoxic zone and biologic aerated filter(A^(2)O-BAF)system was operated to treat low carbon-to-nitrogen ratio domestic wastewater.The A^(2)O process was employed mainly for organic matter and phosphorus removal,and for denitrification.The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A^(2)O process,the suspended activated sludge in this A^(2)OBAF process contained small quantities of nitrifier,but nitrification overwhelmingly conducted in BAF.So the system successfully avoided the contradiction in sludge retention time(SRT)between nitrifying bacteria and phosphorus accumulating organisms(PAOs).Denitrifying phosphorus accumulating organisms(DPAOs)played an important role in removing up to 91%of phosphorus along with nitrogen,which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance.The average removal efficiency of chemical oxygen demand(COD),total nitrogen(TN),total phosphorus(TP),and NH_(4)^(+)-N were 85.56%,92.07%,81.24%and 98.7%respectively.The effluent quality consistently satisfied the national first level A effluent discharge standard of China.The average sludge volume index(SVI)was 85.4 mL·g^(-1)additionally,the volume ratio of anaerobic,anoxic and aerobic zone in A^(2)O process was also investigated,and the results demonstrated that the optimum value was 1:6:2.展开更多
In this paper,a study was conducted on the effect of polyhydroxyalkanoates(PHA)and glycogen transformations on biologic nitrogen and phosphorus removal in low dissolved oxygen(DO)systems.Two laboratory-scale sequencin...In this paper,a study was conducted on the effect of polyhydroxyalkanoates(PHA)and glycogen transformations on biologic nitrogen and phosphorus removal in low dissolved oxygen(DO)systems.Two laboratory-scale sequencing batch reactors(SBR1 and SBR2)were operating with anaerobic/aerobic(low DO,0.15-0.45 mg·L^(-1))configurations,which cultured a propionic to acetic acid ratio(molar carbon ratio)of 1.0 and 2.0,respectively.Fewer poly-3-hydroxybutyrate(PHB),total PHA,and glycogen transformations were observed with the increase of propionic/acetic acid,along with more poly-3-hydroxyvalerate(PHV)and poly-3-hydroxy-2-methyvalerate(PH2MV)shifts.The total nitrogen(TN)removal efficiency was 68%and 82%in SBR1 and SBR2,respectively.In the two SBRs,the soluble ortho-phosphate(SOP)removal efficiency was 94%and 99%,and the average sludge polyphosphate(poly-P)content(g·g-MLVSS^(-1))was 8.3%and 10.2%,respectively.Thus,the propionic to acetic acid ratio of the influent greatly influenced the PHA form and quantity,glycogen transformation,and poly-P contained in activated sludge and further determined TN and SOP removal efficiency.Moreover,significant correlations between the SOP removal rate and the(PHV+PH2MV)/PHA ratio were observed(R^(2)>0.99).Accordingly,PHA and glycogen transformations should be taken into account as key components for optimizing anaerobic/aerobic(low DO)biologic nitrogen and phosphorus removal systems.展开更多
To investigate the chief reason for phosphorus uptake by microorganisms affected by substrates in sequencing batch reactors with the single-stage oxic process,two typical substrates,glucose (R1) and acetate (R2) were ...To investigate the chief reason for phosphorus uptake by microorganisms affected by substrates in sequencing batch reactors with the single-stage oxic process,two typical substrates,glucose (R1) and acetate (R2) were used as the sole carbon source,and the performances of phosphorus removal and the changes of intracellular storage were compared. The experimental results showed that the phenomenon of excess phosphorus uptake was observed in two reactors,but bacteria's capability to take in phosphorus and its intracellular storage were obviously different under the same operational condition. After steady-state operation,total phosphorus (TP) removed per MLVSS in R1 and R2 was 6.7―7.4 and 2.7―3.2 mg/g,respectively. The energy storage of poly-β-hydroxyalkanoates (PHA) was nearly constant in R1 during the whole period,and another aerobic storage of glycogen was accumulated (the max accumulation of glycogen was 3.21 mmol-C/g) when external substrate was consumed,and then was decreased to the initial level. However in R2,PHA and glycogen were both accumulated (2.1 and 0.55 mmol-C/g,respectively) when external substrate was consumed,but they showed different changes after the period of external consumption. Compared to rapid decrease of PHA to the initial level,glycogen continued accumulating to the peak (0.88 mmol-C/g) in 2 h of aeration before decreasing. During the aeration,the accumulations/transformations of internal carbon sources in R1 were higher than those in R2. In addition,obvious TP releases were both observed in R1 and R2 other than PHA and glycogen during the long-term idle period; moreover,the release content of phosphorus in R1 was also higher than that in R2. The researches indicated that different aerobic metabolism of substrate occurred in R1 and R2 due to the different carbon sources in influent,resulting in different types and contents of aerobic storage accumulated/translated in bacteria of R1 and R2. As a result,ATP content provided for phosphorus uptake was different in R1 and R2,and the capability to take up phosphorus was also different from each other.展开更多
基金The Project of Scientific Research Base and Scientific Innovation Platform of Beijing Municipal Education Commission (No.PXM2008-014204-050843)the Project of Beijing Science and Technology Committee (No.D07050601500000)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No.RCEES-QN-200706)the Special Funds for Young Scholars of RCEES,CAS.
文摘Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability.
基金Project supported by the Key International Cooperative Program of NSFC(No. 50521140075)the Hi-Tech Research and Development Program(863)of China(No. 2004AA601020)the Attached Projects of"863"Project of Beijing Municipal Science and Technology(No.20005186040421).
文摘The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.
基金Supported by Scientific Research Project of Hunan Provincial Department of Education(22C0083)。
文摘[Objectives] This study was conducted to solve the prominent problems in the treatment of domestic sewage in southern rural areas of China. [Methods] An integrated process treatment mode of anaerobic/anoxic/aerobic moving bed biofilm reactor (A 2O-MBBR) was proposed to analyze and study its operating effect and influencing factors. [Results] The A^(2)O-MBBR mode had good COD removal efficiency and nitrogen and phosphorus removal performance, and the water quality index of the effluent met the Class A standard of GB181918-2002. This mode is suitable for treating rural domestic sewage, and has high treatment effects in different operating periods. In spring, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS reached (83.53 ± 2.15)%, (89.44 ± 4.97)%, (67.36±18.53)%, (88.22±11.21)% and (91.73±2.25)%, respectively;In the autumn period, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS were (83.49±2.64)%, (89.26±9.19)%, (66.05±17.00)%, (87.48±9.68)%, and (91.13±2.35)%. [Conclusions] This study provides theoretical reference and technical support for the popularization and application of A^(2)O-MBBR integrated process.
文摘To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
文摘A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.
文摘Effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by DPB sludge was systematically studied using batch experiments, at the same time the variation of ORP was investigated. Results showed that the denitrifying and phosphorus uptake rate in anoxic phase increased with the high initial anaerobic carbon source addition. However once the initial COD concentration reached a certain level, which was in excess to the PHB saturation of poly-P bacteria, residual COD carried over to anoxic phase inhibited the subsequent denitrifying phosphorus uptake. Simultaneously, phosphate uptake continued until all nitrate was removed, following a slow endogenous release of phosphate. High nitrate concentration in anoxic phase increased the initial denitrifying phosphorus rate. Once the nitrate was exhausted, phosphate uptake changed to release. Moreover, the time of this turning point occurred later with the higher nitrate addition. On the other hand, through on-line monitoring the variation of the ORP with different initial COD concentration, it was found ORP could be used as a control parameter for phosphorus release, but it is impossible to utilize ORP for controlling the denitrificaion and anoxic phosphorus uptake operations.
基金Supported by the Major National Water Sci-Tech Projects of China(2009ZX07210-009)the Department of Environmental Protection of Shandong Province(2006032,2060403)
文摘This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.
文摘A full-scale test was operated by using low dissolved oxygen activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of CODCr, TN and TP varied in a range of 352.9 mg/L-1338.2 mg/L, 34.4 mg/L-96.3 mg/L, and 2.21 mg/L-24.0 mg/L, the average removal efficiencies were 94.9%, 86.7% and 93.0%, respectively. During the test period of two months, effluent meas of CODCr,, BOD5, NH3-N, TN and TP were below 50 mg/L, 25 mg/L, 10 mg/L and 1.0 mg/L respectively. The low dissolved oxygen activated sludge process has a simple flow sheet, fewer facilities and high N and P removal efficiency. It is very convenient to retrofit the conventional activated sludge process with the above process.
文摘A practice wastewater treatment plant was operated using intermittent aeration activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of COD Cr , BOD 5, TN, TP, NH 3\|N, TKN, and SS varied in a range of 207.5—1640 mg/L, 61.8—637 mg/L, 28.5—75.6 mg/L, 4.38—20.2 mg/L, 13.6—31.9 mg/L, 28.5—75.6 mg/L, and 111—1208 mg/L, the effluent means were less than 50 mg/L, 20 mg/L, 5 mg/L, 1.0 mg/L, 5 mg/L, 10 mg/L, and 20 mg/L, respectively. Based on a long time of operating results, this process is very suitable for nutrient biological removal for treating the municipal wastewater those water characteristics are similar as that of the Songjiang Municipal Waste Water Treatment Plant(SJMWTP).
基金Supported by Key Technology Research and Development Program of the Tenthfive-year plan (2001BA610A-09), the NationalNatural Science Foundation of China (No. 50478040) and 863 Hi-Technology Research and Development Program of China(No.2004AA601020)
文摘A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.
文摘Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.
基金The Shuguang Program of Shanghai Education Committee (No. 03SG20)
文摘Three parallel anaerobic-anoxic/anaerobic-aerobic (AN/AO) processes were developed to enrich denitrifying phosphorus removal bacteria (DPB) for low strength wastewater treatment. The main body of the parallel AN/AO process consists of an AN (anaerobic-anoxic) process and an AO (anaerobic-aerobic) process. In the AO process, the common phosphorus accumulating organisms (PAOs) was dominate, while in the AN process, DPB was dominate, The volume of anaerobic zone(Vana):anoxie zone(Vano) : aerobic zone (Vaer) for the parallel AN/AO process is 1:1:1 in contrast with a Vana:Vaer and Vano:Vaer of 1:2 and 1:4 for a traditional biological nutrient removal process (BNR). Process 3 excels in the 3 processes on the basis of COD, TN and TP removal. For 4 month operation, the effluent COD concentration of process 3 did not exceed 60 mg/L; the effluent TN concentration of process 3 was lower than 15 mg/L; and the effluent TP concentration of process 3 was lower than 1 mg/L.
基金Sponsored by the National Natural Science Foundation of China(5052114007550478084)
文摘A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2 mg/L, and total phosphorus of 0.3 mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrifieation.
基金Project supported by the National Natural Science Foundation of China(No. 50608064)the Natural Science Foundation of Zhejiang Province(No. Y505031)the National Post-doctoral Science Foundation ofChina (No. 2005037296)
文摘The characteristics of anaerobic phosphorus release and anoxic phosphorus uptake were investigated in sequencing batch reactors using denitrifying phosphorus removing bacteria (DPB) sludge. The lab-scale experiments were accomplished under conditions of various nitrite concentrations (5.5, 9.5, and 15 mg/L) and mixed liquor suspended solids (MLSS) (1844, 3231, and 6730 mg/L). The results obtained confirmed that nitrite, MLSS, and pH were key factors, which had a significant impact on anaerobic phosphorus release and anoxic phosphorus uptake in the biological phosphorous removal process. The nitrites were able to successfully act as electron acceptors for phosphorous uptake at a limited concentration between 5.5 and 9.5 mg/L. The denitrification and dephosphorous were inhibited when the nitrite concentration reached 15 mg/L. This observation indicated that the nitrite would not inhibit phosphorus uptake before it exceeded a threshold concentration. It was assumed that an increase of MLSS concentration from 1844 mg/L to 6730 mg/L led to the increase of denitrification and anoxic P-uptake rate. On the contrary, the average P-uptake/N denitrifying reduced from 2.10 to 1.57 mg PO4^3--P/mg NO3^--N. Therefore, it could be concluded that increasing MLSS of the DEPHANOX system might shorten the reaction time of phosphorus release and anoxic phosphorus uptake. However, excessive MLSS might reduce the specific denitrifying rate. Meanwhile, a rapid pH increase occurred at the beginning of the anoxic conditions as a result of denitrification and anoxic phosphate uptake. Anaerobic P release rate increased with an increase in pH. Moreover, when pH exceeded a relatively high value of 8.0, the dissolved P concentration decreased in the liquid phase, because of chemical precipitation. This observation suggested that pH should be strictly controlled below 8.0 to avoid chemical precipitation if the biological denitrifying phosphorus removal capability is to be studied accurately.
基金This work was supported by the project of Scientific Research Base And Scientific Innovation Platform of Beijing Municipal Education Commission(No.PXM2008_014204_050843)Supported by State Key Laboratory of Urban Water Resource and Environment(HIT)(No.QAK200802).
文摘A laboratory-scale anaerobic-anoxic-aerobic process(A^(2)O)with a small aerobic zone and a bigger anoxic zone and biologic aerated filter(A^(2)O-BAF)system was operated to treat low carbon-to-nitrogen ratio domestic wastewater.The A^(2)O process was employed mainly for organic matter and phosphorus removal,and for denitrification.The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A^(2)O process,the suspended activated sludge in this A^(2)OBAF process contained small quantities of nitrifier,but nitrification overwhelmingly conducted in BAF.So the system successfully avoided the contradiction in sludge retention time(SRT)between nitrifying bacteria and phosphorus accumulating organisms(PAOs).Denitrifying phosphorus accumulating organisms(DPAOs)played an important role in removing up to 91%of phosphorus along with nitrogen,which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance.The average removal efficiency of chemical oxygen demand(COD),total nitrogen(TN),total phosphorus(TP),and NH_(4)^(+)-N were 85.56%,92.07%,81.24%and 98.7%respectively.The effluent quality consistently satisfied the national first level A effluent discharge standard of China.The average sludge volume index(SVI)was 85.4 mL·g^(-1)additionally,the volume ratio of anaerobic,anoxic and aerobic zone in A^(2)O process was also investigated,and the results demonstrated that the optimum value was 1:6:2.
基金This research work was supported by the Shanghai Shuguang Scholarship(No.05SG26)the Postdoctoral Foundation of China(No.20090450524).
文摘In this paper,a study was conducted on the effect of polyhydroxyalkanoates(PHA)and glycogen transformations on biologic nitrogen and phosphorus removal in low dissolved oxygen(DO)systems.Two laboratory-scale sequencing batch reactors(SBR1 and SBR2)were operating with anaerobic/aerobic(low DO,0.15-0.45 mg·L^(-1))configurations,which cultured a propionic to acetic acid ratio(molar carbon ratio)of 1.0 and 2.0,respectively.Fewer poly-3-hydroxybutyrate(PHB),total PHA,and glycogen transformations were observed with the increase of propionic/acetic acid,along with more poly-3-hydroxyvalerate(PHV)and poly-3-hydroxy-2-methyvalerate(PH2MV)shifts.The total nitrogen(TN)removal efficiency was 68%and 82%in SBR1 and SBR2,respectively.In the two SBRs,the soluble ortho-phosphate(SOP)removal efficiency was 94%and 99%,and the average sludge polyphosphate(poly-P)content(g·g-MLVSS^(-1))was 8.3%and 10.2%,respectively.Thus,the propionic to acetic acid ratio of the influent greatly influenced the PHA form and quantity,glycogen transformation,and poly-P contained in activated sludge and further determined TN and SOP removal efficiency.Moreover,significant correlations between the SOP removal rate and the(PHV+PH2MV)/PHA ratio were observed(R^(2)>0.99).Accordingly,PHA and glycogen transformations should be taken into account as key components for optimizing anaerobic/aerobic(low DO)biologic nitrogen and phosphorus removal systems.
基金Supported by the National Natural Science Foundation of China (Grant No. 50478054)the Program for NCET in University (Grant No. 0770)
文摘To investigate the chief reason for phosphorus uptake by microorganisms affected by substrates in sequencing batch reactors with the single-stage oxic process,two typical substrates,glucose (R1) and acetate (R2) were used as the sole carbon source,and the performances of phosphorus removal and the changes of intracellular storage were compared. The experimental results showed that the phenomenon of excess phosphorus uptake was observed in two reactors,but bacteria's capability to take in phosphorus and its intracellular storage were obviously different under the same operational condition. After steady-state operation,total phosphorus (TP) removed per MLVSS in R1 and R2 was 6.7―7.4 and 2.7―3.2 mg/g,respectively. The energy storage of poly-β-hydroxyalkanoates (PHA) was nearly constant in R1 during the whole period,and another aerobic storage of glycogen was accumulated (the max accumulation of glycogen was 3.21 mmol-C/g) when external substrate was consumed,and then was decreased to the initial level. However in R2,PHA and glycogen were both accumulated (2.1 and 0.55 mmol-C/g,respectively) when external substrate was consumed,but they showed different changes after the period of external consumption. Compared to rapid decrease of PHA to the initial level,glycogen continued accumulating to the peak (0.88 mmol-C/g) in 2 h of aeration before decreasing. During the aeration,the accumulations/transformations of internal carbon sources in R1 were higher than those in R2. In addition,obvious TP releases were both observed in R1 and R2 other than PHA and glycogen during the long-term idle period; moreover,the release content of phosphorus in R1 was also higher than that in R2. The researches indicated that different aerobic metabolism of substrate occurred in R1 and R2 due to the different carbon sources in influent,resulting in different types and contents of aerobic storage accumulated/translated in bacteria of R1 and R2. As a result,ATP content provided for phosphorus uptake was different in R1 and R2,and the capability to take up phosphorus was also different from each other.