This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry ma...This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.展开更多
Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their r...Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their relationship with grain yield are still unclear.In this study,rice varieties differing in N sensitivity over many years of experiments were used.A field experiment with multiple N rates(0,90,180,270,and 360 kg ha^(-1))was conducted to elucidate the effects of N application on root morphology,root physiology,and grain yield.A pot experiment with root excision and exogenous application of 6-benzyladenine(6-BA)at heading stage was used to further verify the above effects.The findings revealed that(1)under the same N application rate,N-insensitive varieties(NIV)had relatively large root biomass(root dry weight,length,and number).Grain yield was associated with root biomass in NIV.The oxidation activity and zeatin(Z)+zeatin riboside(ZR)contents in roots obviously and positively correlated with grain yield in N-sensitive varieties(NSV),and accounted for its higher grain yield than that of NIV at lower N application rates(90 and 180 kg ha^(-1)).(2)The root dry weight required for equal grain yield of NIV was greater than that of NSV.Excision of 1/10 and 1/8 of roots at heading stage had no discernible effect on the yield of Liangyoupeijiu(NIV),and it significantly reduced yield by 11.5%and 21.3%in Tianyouhuazhan(NSV),respectively,compared to the treatment without root excision.The decrease of filled kernels and grain weight after root excision was the primary cause for the yield reduction.Root excision and exogenous 6-BA application after root excision had little influence on the root activity of NIV.The oxidation activity and Z+ZR contents in roots of NSV decreased under root excision,and the increase in the proportion of excised roots aggravated these effects.The application of exogenous 6-BA increased the root activity of NSV and increased filled kernels and grain weight,thereby reducing yield loss after root excision.Thus,the root biomass of NIV was large,and there may be a phenomenon of"root growth redundancy."Vigorous root activity was an essential feature of NSV.Selecting rice varieties with high root activity or increasing root activity by cultivation measures could lead to higher grain yield under lower N application rates.展开更多
This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in...This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize.展开更多
The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosp...The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.展开更多
Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz...Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.展开更多
[Objectives]To study the effect of nitrogen(N)on the growth demand of summer peanuts under a certain level of phosphorus and potassium fertilizers,and to carry out experiments on nitrogen fertilizer control of summer ...[Objectives]To study the effect of nitrogen(N)on the growth demand of summer peanuts under a certain level of phosphorus and potassium fertilizers,and to carry out experiments on nitrogen fertilizer control of summer peanuts.[Methods]Four treatments were set up in the experiment:no-nitrogen plot(N 0P_(4)K_(4)),optimized nitrogen plot(N_(7)P_(4)K_(4)),70%optimized nitrogen plot(N_(5)P_(4)K_(4)),130%optimized nitrogen plot(N 9P 4K 4),repeated 3 times,and arranged in random blocks.The area of the plot was 42 m^(2),ridges were set between the plots,and protective rows of more than 1 m were set around the experimental site.The types of fertilizers were urea,superphosphate,and imported potassium chloride,and the variety of peanuts was Linhua 5.Except for the level of fertilization,other agricultural operations were the same,and soil sampling tests,field records,and yield testing were carried out according to the requirements of the plan.[Results]On the basis of 60 kg/ha of phosphorus and potassium fertilizer application,the optimum economical fertilizer application rate and the highest application rate of pure nitrogen were about 115.20 and 131.25 kg/ha,respectively.[Conclusions]This study is expected to provide a certain basis for the high-quality and high-yield summer peanuts in southern Shandong area.展开更多
[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three ...[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three factors, the 310 scheme was designed to study the effects of nitrogen application rate, density and seedling age on dry matter accumulation of no-tillage rape in seedling stage. [Result] With the increase of nitrogen application rate, density and seedling age, the dry matter content appeared like a parabola, increasing firstly and then declining. The change of nitrogen application rate caused greater influence than that of density and seedling age; the interaction effects between nitrogen application rate and density were greater than that between nitrogen application rate and seedling age as well as between density and seedling age. [Conclusion] Considered comprehensively, the dry matter content of no-tillage rape in seedling stage reached the highest level (4 768.2 kg/hm2) when the nitrogen application rate, the density and the seedling age were 195 kg/hm2, 93 000 plants/hm2 and 33 d, respectively.展开更多
Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season...Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.展开更多
Effects of phosphorus(P)fertilizer application rate on soil transformation processes of P fraction are still unclear in the riparian zone.Purple alluvial soils in the riparian zone of the Three Gorges Reservoir were c...Effects of phosphorus(P)fertilizer application rate on soil transformation processes of P fraction are still unclear in the riparian zone.Purple alluvial soils in the riparian zone of the Three Gorges Reservoir were collected to conduct a 21-day incubation executed by two hydrological environments(drying and flooding)and ten application rates of P fertilizer.Transformation percentages of P fertilizer(TPPF)were calculated as content differences of soil P fractions between fertilizer addition and none fertilizer addition divided by soil total P increases caused by fertilizer addition.TPPF to inorganic P extracted by sodium hydroxide(NaOH-Pi)and hydrochloric acid(HCl-Pi)increase by 20.91%(9.71%)and 24.26%(40.72%)under the drying(flooding)environment.Instead,TPPF to the other fractions decrease.Phosphorus fertilizer input mainly has indirect positive and negative effects on organic P via precipitated P under the drying and flooding environments and finally has indirect positive effects on labile P(p<0.001).Percentage changes of water-soluble inorganic P(H2O-Pi)and HCl-Pi under the flooding environment are higher than that under the drying environment,and percentage changes of organic P extracted by sodium hydrogen carbonate(Na HCO3-Po)and NaOH-Pi show an opposite trend(p<0.01).?(differences in soil P fraction content between flooding and drying incubations)H2O-Pi is negatively correlated with?NaHCO3-Po,and?NaHCO3-Po is positively correlated with?NaOH-Pi(p<0.001).In conclusion,P fertilizer is transformed more into precipitated P than into other P fractions with an application rate increase.Phosphorus fertilizer input mainly increases organic P via precipitated P under the drying environment and decreases organic P via precipitated P under the flooding environment,and organic P is further transformed into labile P.With P fertilizer input,P release caused by flooding is derived from NaHCO3-Po release triggered by NaOH-Pi release.The results can be helpful for the understanding of P fertilizer migration processes from the riparian zone soil to the Three Gorges Reservoir under rain leaching and flooding.展开更多
The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different...The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different nitrogen application rates (120, 150, 180, and 210 kg/hm^2). The experiment was conducted on loam soil during 2004-2006 at the experimental farm of the China National Rice Research Institute in Hangzhou, China. In these years, the two hybrid rice cleady showed higher yield at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Guodao 6 produced an average grain yield of 10 215.6 kg/hm^2 across the three years, while the yield of Eryou 7954 was 9 633.0 kg/hm^2. With fewer plants per unit-area and larger plants in the plots, the two hybrid rice produced more panicles per plant in three years. The highest nitrogen uptake of the two hybrid rice was at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Further increasing nitrogen application rate was not advantageous for nitrogen uptake in super-high-yielding rice under the same plant density.展开更多
Lipid content has an important effect on rice eating quality,but the effects of fertilizer application rate on the lipid synthesis and eating quality of rice are not well understood.Potassium(K)has a strong influence ...Lipid content has an important effect on rice eating quality,but the effects of fertilizer application rate on the lipid synthesis and eating quality of rice are not well understood.Potassium(K)has a strong influence on rice quality and the requirement for K fertilizer in rice is greater than for nitrogen(N)and phosphorus(P)fertilizers.To investigate the effects of K fertilizer on the lipid synthesis and eating quality of rice,we used Nanjing 9108(NJ9108,japonica)and IR72(indica)rice as experimental materials and four K levels:K0(0 kg ha^(-1)),K1(90 kg ha^(-1)),K2(135 kg ha^(-1))and K3(180 kg ha^(-1)).The results showed that the lipid content,free fatty acid(FFA)content,unsaturated fatty acid(UFA)content,malonyl-CoA(MCA)content,phosphatidic acid(PA)content,lipid synthesis-related enzyme activities and eating quality first increased and then decreased with increasing K in both cultivars.The maximum values were obtained under K2.However,the saturated fatty acid(SFA)content showed the opposite trend.No significant differences were found in pyruvate(PYR)content among the K treatments.The protein and oxaloacetic acid(OAA)contents and phosphoenolpyruvate carboxylase(PEPCase)activity of NJ9108 first decreased and then increased with increasing K,and the minimum values were obtained under K2;while IR72 showed the opposite trend and the maximum values were obtained under K1.Overall,increasing K optimized the fatty acid components and increased the lipid content and eating quality of rice by enhancing lipid synthesis-related enzyme activities and regulating substrate competition for lipid and protein synthesis.The optimal K application rate for lipid synthesis,eating quality and grain yield was 135 kg ha^(-1)for both cultivars.展开更多
The objective of this study was to determine the morphology mechanism of nitrogen (N) fertilizer rates and ratio on lodging resistance through analying its effects among lodging index (LI), lodging-related morphol...The objective of this study was to determine the morphology mechanism of nitrogen (N) fertilizer rates and ratio on lodging resistance through analying its effects among lodging index (LI), lodging-related morphological traits and physical strength in basal intemodes by comparing japonica and indica super rice cultivars. Field experiments, with three nitrogen levels (0, 150 and 300 kg ha-L) and two ratios of basal to topdressing (8:2 and 5:5) with two super rice cultivars (Yliangyou 2 and Wuyunjing 23), were conducted in the Baolin Farm, Danyang Country, Jiangsu Province, China, in 2011 and 2012. Effects of N fertilizer rates and ratios on morphology of whole plant, morphology traits in basal intemodes and culm's physical strength parameters were investigated at 20 d after full heading stage. LI of Yliangyou 2 was significant greater than that of Wuyunjing 23 due to larger bending moment by whole plant (WP) with higher plant height and gravity center height. With higher volume of N fertilizer, LI of two super rice cultivars was increased conspicuously. However, no significant effect was detected with increase of panicle fertilizer ratio. The size of breaking strength (M) in basal intemodes was the key factor determining LI among N fertilizer treatments. Correlation analysis revealed that M value was positively related bending stress (BS) of Wuyunjing 23 and section modulus (Z) of Yliangyou 2, respectively. The higher N fertilizer levels induced reduction ofBS of Wuyunjing 23 due to weak culm and leaf sheath plumpness status and reduced Z of Yliangyou 2 owning to small diameter and culm wall thickness, consequently, influencing their M indirectly. These results suggested that breaking strength was the key factor influencing LI with increase of N fertilizer levels. However, the lodging-related morphology mechanism was different with genotypes. Culm wall thickness and diameter in basal internodes of indica super rice and culm and leaf sheath plumpness status of japonica super rice influenced breaking strength, as well as lodging index, respectively.展开更多
This study was conducted wiffl a spring soybean variety Jindou 19 to test file effects of rhizobia inoculation or non-inoculation and nitrogen application rates at 0, 27, 54 and 75 kg/hm^2 (N1-4) on root nodule dry ...This study was conducted wiffl a spring soybean variety Jindou 19 to test file effects of rhizobia inoculation or non-inoculation and nitrogen application rates at 0, 27, 54 and 75 kg/hm^2 (N1-4) on root nodule dry weight, root nodule number, yield and yield components of soybean. The results showed that the nitrogen fertilizer significantly affected soybean root noduce and soybean yield, the dry weight and number of root nodules increased gradually with the increase of nitrogen application rate, and the yield of file rhizobia inoculated treatment was significantly higher than that of file rhizobia non-inoculated treatment; and under file condition of file rhizobia inoculation, with nitrogen application amount at 75 kg/hm^2, file Jindou 19 performed a better nitrogen fixing effect in file growing stage, and its plot yield was 4 997.417 kg/hm^2, 4.06% higher than that of file treatment without inoculating rhizobium and 12.50% higher than that of the treatment without applying nitrogen fertilizer.展开更多
To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respirat...To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency (Encf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient (Ra). Results from the pot experiments revealed a linear relationship between Ra and tissue N content as Ra = 4.74N-1.45 (R^2= 0.85, P 〈 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the Encf declined as the N application rate increased.展开更多
Excessive nitrogen(N) fertilization in intensive agricultural areas such as the plain region of South China has resulted in low nitrogen use efficiency and serious environmental problems. To determine the optimum N ...Excessive nitrogen(N) fertilization in intensive agricultural areas such as the plain region of South China has resulted in low nitrogen use efficiency and serious environmental problems. To determine the optimum N application rate, grain yield, apparent nitrogen recovery efficiency(ANRE), apparent N loss, and ammonium(NH_3) volatilization under different N application rates in the three years from 2012 to 2014 were studied. The results showed that the relationship between grain yields and N application rate in the three years were well fitted by quadratic equations. When N application rate reached 197 kg ha^(–1) in 2012, 199 kg ha^(–1) in 2013 and 196 kg ha^(–1) in 2014, the plateau of the grain yields appeared. With the increase of N application rate, the ANRE for rice decreased which could be expressed with sigmoidal equation; when N application rate was 305 kg ha^(–1) in 2012, 275 kg ha^(–1) in 2013 and 312 kg ha^(–1) in 2014, the curves of ANRE appeared turing points. Besides, the relationship between soil Nresidual and N application rate was fitted by the quadratic equation and the maximums of soil Nresidual were reached in the three years with the N application rate of 206, 244 and 170 kg ha^(–1), respectively. Statistical analysis indicated that NH3 volatilization and apparent N loss in three years all increased with the increasing N application rate. When the amount of NH3 volatilization increased to 11.6 kg N ha^(–1) in 2012, 40.5 kg N ha^(–1) in 2013 and 57.0 kg N ha^(–1)in 2014, the apparent N loss in the three years had obvious increase. To determine the optimum N application rate, the average N application on the plateau of the grain yield was considered as the lower limit while the average N application rate at the turning points of ANRE, the residual N in soil and apparent N loss was taken as the upper limit. According to the results in three years, the optimum N application rate for rice in Zhejiang was 197–255 kg ha^(–1).展开更多
High temperature(HT)during grain filling is one of the most important environmental factors limiting maize yield and grain quality.Nitrogen(N)fertilizer is essential for maintaining normal plant growth and defense aga...High temperature(HT)during grain filling is one of the most important environmental factors limiting maize yield and grain quality.Nitrogen(N)fertilizer is essential for maintaining normal plant growth and defense against environmental stresses.The effects of three N rates and two temperature regimes on the grain yield and quality of fresh waxy maize were studied using the hybrids Suyunuo 5(SYN5)and Yunuo 7(YN7)as materials.N application rates were 1.5,4.5,and 7.5 g plant-1,representing low,moderate,and high N levels(LN,MN,and HN,respectively).Mean day/night temperatures during the grain filling of spring-and summer-sown plants were 27.6/21.0°C and 28.6/20.0°C for ambient temperature(AT)and 35/21.0°C and 35/20.0°C for HT,respectively.On average,HT reduced kernel number,weight,yield,and moisture content by 29.8%,17.9%,38.7%,and 3.3%,respectively.Kernel number,weight,yield,moisture,and starch contents were highest under MN among the three N rates under both temperature regimes.HT reduced grain starch content at all N levels.HT increased grain protein content,which gradually increased with N rate.Mean starch granule size under MN was larger(10.9μm)than that under LN and HN(both 10.4μm)at AT.However,the mean size of starch granules was higher under LN(11.7μm)and lower under MN(11.2μm)at HT.Iodine binding capacity(IBC)was lowest under MN and highest under HN among the three N levels under both temperature regimes.In general,IBC at all N rates was increased by HT.Peak viscosity(PV)was gradually reduced with increasing N rate at AT.In comparison with LN,PV was increased by MN and decreased by HN at HT.Retrogradation percentage gradually increased with N rate at AT,but was lowest under MN among the three N rates at HT.LN+AT and MN+HT produced grain with high pasting viscosity and low retrogradation tendency.MN application could alleviate the negative effects of HT on the grain yield and quality of fresh waxy maize.展开更多
Nitrogen is one of the important factors for high yield of rice.Apart from high yield,high quality has become the current urgent demand for rice production.Grain-filling stage is crucial for rice yield and quality for...Nitrogen is one of the important factors for high yield of rice.Apart from high yield,high quality has become the current urgent demand for rice production.Grain-filling stage is crucial for rice yield and quality formation.However,the effect of nitrogen on grain-filling characteristics and the relationship of grain-filling characteristics and rice quality of mid-season indica rice were still unclear.A field experiment was carried out to ascertain the critical grain-filling characteristics that contribute to rice milling quality,appearance quality and cooking and eating quality under nitrogen applications.The results showed that nitrogen applications prolonged the duration of superior and inferior grain filling.The mean grainfilling rate(G_(mean))and the maximum grain-filling rate(G_(max))of the inferior grains were positively correlated with chalky kernel rate,chalkiness,and amylose content.The time reaching the maximum grain-filling rate(T_(max)G)of the inferior grains was positively correlated with brown rice rate,milled rice rate,and head milled rice rate.Chalky kernel rate and chalkiness were negatively correlated with peak paste viscosity and breakdown viscosity.Less amylose content and more crude protein content were detected in nitrogen application of Liangyoupei 9 and Y Liangyou 2 both in 2016 and 2017.According to the correlation analysis,better cooking and eating quality of Y Liangyou 2 which had less amylose content might result from its higher G_(max)and G_(mean)of inferior grain than that of Liangyoupei 9 in the treatments of nitrogen application.These results indicated that the prolonging grain-filling duration and increasing grain weight at the maximum grain-filling rate of inferior grains contributed to the improvement of milling quality,appearance quality,and cooking and eating quality of mid-season indica rice under appropriate nitrogen applications.展开更多
Faced with the scarcity of water resources and irrational fertilizer use,it is critical to supply plants with water and fertilizer in a coordinated pattern to improve yield with high water use efficiency(WUE).One such...Faced with the scarcity of water resources and irrational fertilizer use,it is critical to supply plants with water and fertilizer in a coordinated pattern to improve yield with high water use efficiency(WUE).One such method,alternate partial root-zone irrigation(APRI),has been practiced worldwide,but there is limited information on the performance of different irrigation regimes and nitrogen(N)rates under APRI.The objectives of this study were to investigate the effects of varying irrigation regimes and N rates on shoot growth,grain yield and WUE of maize(Zea mays L.)grown under APRI in the Hexi Corridor area of Northwest China in 2014 and 2015.The three N rates were 100,200 and 300 kg N ha–1,designated N1,N2 and N3,respectively.The three irrigation regimes of 45–50%,60–65%and 75–80%field capacity(FC)throughout the maize growing season,designated W1,W2 and W3,respectively,were applied in combination with each N rate.The results showed that W2 and W3 significantly increased the plant height,stem diameter,crop growth rate,chlorophyll SPAD value,net photosynthetic rate(Pn),biomass,grain yield,ears per ha,kernels per cob,1000-kernel weight,harvest index,evapotranspiration and leaf area index(LAI)compared to W1 at each N rate.The N2 and N3 treatments increased those parameters compared to N1 in each irrigation treatment.Increasing the N rate from the N2 to N3 resulted in increased biomass and grain yield under W3 while it had no impact on those under the W1 and W2 treatments.The W3 N3 and W2 N2 and W2 N3 treatments achieved the greatest and the second-greatest biomass and grain yield,respectively.Increasing the N rate significantly enhanced the maximum LAI(LAI at the silking stage)and Pn under W3,suggesting that the interaction of irrigation and fertilizer N management can effectively improve leaf growth and development,and consequently provide high biomass and grain yield of maize.The W2 N2,W2 N3 and W3 N3 treatments attained the greatest WUE among all the treatments.Thus,either 60–65%FC coupled with 200–300 kg N ha–1 or 75–80%FC coupled with 300 kg N ha–1 is proposed as a better pattern of irrigation and nitrogen application with positive regulative effects on grain yield and WUE of maize under APRI in the Hexi Corridor area of Northwest China and other regions with similar environments.These results can provide a basis for indepth understanding of the mechanisms of grain yield and WUE to supply levels of water and nitrogen.展开更多
A pool experiment was carried out to study the effects of different nitrogen applicationstrategies (rates and stages of nitrogen application) on yield and forage nutritivequality of Zea mexicana cultivated in summer, ...A pool experiment was carried out to study the effects of different nitrogen applicationstrategies (rates and stages of nitrogen application) on yield and forage nutritivequality of Zea mexicana cultivated in summer, 2002. In the whole growing stage, its stemwas clipped three times at the height of 25cm when it was 110cm high (H1, H2 and H3 standfor the first, second and third harvest stage, respectively). Six indexes includingcrude protein (CP), ether extract (EE), nitrogen free extract (NFE), acid detergentfiber (ADF), crude ash (CA), and general energy (GE) were employed to evaluate the foragenutritive value. The results showed that the content of CP and EE increased but thecontent of CA and ADF decreased under the two nitrogen rates (High-rate N, 600kgha-1;Mid-rate N, 300kgha-1). The fresh and dry harvest biomass of the whole plants on H1 andthose of the leaves on H2 were also improved. But the stalks on H2 and the whole plantson H3 were affected mainly by dressing nitrogen fertilizer. The yield of CP and EE, CA,NFE, and GE was mainly affected by nitrogen rates. The ADF yield increased was due to theincrement of the fresh and dry harvest biomass. Nitrogen applied as base fertilizer forsummer Zea mexicana can be harvested a higher biomass and improve the forage nutritivequality.展开更多
The study adopted split block design with different treatment levels of density and fertilizer to investigate the growth period,population tiller dynamics,leaf area,dry matter accumulation,plant traits,panicle-grain s...The study adopted split block design with different treatment levels of density and fertilizer to investigate the growth period,population tiller dynamics,leaf area,dry matter accumulation,plant traits,panicle-grain structure,yielding ability and stress resistance of Tongjing 981 under different density and nitrogen fertilizer levels,so as to make clear the effects of different densities and nitrogen fertilizer levels on the population development and yield of Tongjing 981.The results showed that a too-low density was not conductive to the formation of sufficient number of panicles,and when the density was too high,it affected the number of grains per panicle and 1000-grain weight;and when nitrogen fertilizer was at a too-low level,it would restrict the population development,and a too-high nitrogen fertilizer easily led to the extension of the growth period and the aggravation of sheath blight.Reasonable density and fertilization level could make the development of individuals in Tongjing 981 population coordinated,and further help to establish a reasonable population structure,maintain a high leaf area and dry matter accumulation during the filling period,and balance the relationship of population dry matter weight with economic coefficient and panicle,grain and weight,thereby improving the population quality and yield of Tongjing 981.展开更多
基金supported by the Guangdong Technical System of Peanut and Soybean Industry(2023KJ136-05)China Agriculture Research System(CARS-15)。
文摘This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.
基金the National Natural Science Foundation of China(32071947,32071944,31871557)the Open Project of Jiangsu Key Laboratory of Crop Genetics and Physiology(YCSL202102)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Postgraduate Research&Practice Innovation Program of Jiangsu province(KYCX21_3235).
文摘Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their relationship with grain yield are still unclear.In this study,rice varieties differing in N sensitivity over many years of experiments were used.A field experiment with multiple N rates(0,90,180,270,and 360 kg ha^(-1))was conducted to elucidate the effects of N application on root morphology,root physiology,and grain yield.A pot experiment with root excision and exogenous application of 6-benzyladenine(6-BA)at heading stage was used to further verify the above effects.The findings revealed that(1)under the same N application rate,N-insensitive varieties(NIV)had relatively large root biomass(root dry weight,length,and number).Grain yield was associated with root biomass in NIV.The oxidation activity and zeatin(Z)+zeatin riboside(ZR)contents in roots obviously and positively correlated with grain yield in N-sensitive varieties(NSV),and accounted for its higher grain yield than that of NIV at lower N application rates(90 and 180 kg ha^(-1)).(2)The root dry weight required for equal grain yield of NIV was greater than that of NSV.Excision of 1/10 and 1/8 of roots at heading stage had no discernible effect on the yield of Liangyoupeijiu(NIV),and it significantly reduced yield by 11.5%and 21.3%in Tianyouhuazhan(NSV),respectively,compared to the treatment without root excision.The decrease of filled kernels and grain weight after root excision was the primary cause for the yield reduction.Root excision and exogenous 6-BA application after root excision had little influence on the root activity of NIV.The oxidation activity and Z+ZR contents in roots of NSV decreased under root excision,and the increase in the proportion of excised roots aggravated these effects.The application of exogenous 6-BA increased the root activity of NSV and increased filled kernels and grain weight,thereby reducing yield loss after root excision.Thus,the root biomass of NIV was large,and there may be a phenomenon of"root growth redundancy."Vigorous root activity was an essential feature of NSV.Selecting rice varieties with high root activity or increasing root activity by cultivation measures could lead to higher grain yield under lower N application rates.
文摘This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize.
文摘The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.
基金This work was funded by Ningxia Hui Autonomous Region Key Research and Development Project(2021BEF02004),Central Finance Forestry Reform and Development Fund“Forest Seed Cultivation”.
文摘Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.
基金Supported by the Project of Peanut Innovation Team of Shandong Province Modern Agricultural Industry Technology System(SDAIT-05-022).
文摘[Objectives]To study the effect of nitrogen(N)on the growth demand of summer peanuts under a certain level of phosphorus and potassium fertilizers,and to carry out experiments on nitrogen fertilizer control of summer peanuts.[Methods]Four treatments were set up in the experiment:no-nitrogen plot(N 0P_(4)K_(4)),optimized nitrogen plot(N_(7)P_(4)K_(4)),70%optimized nitrogen plot(N_(5)P_(4)K_(4)),130%optimized nitrogen plot(N 9P 4K 4),repeated 3 times,and arranged in random blocks.The area of the plot was 42 m^(2),ridges were set between the plots,and protective rows of more than 1 m were set around the experimental site.The types of fertilizers were urea,superphosphate,and imported potassium chloride,and the variety of peanuts was Linhua 5.Except for the level of fertilization,other agricultural operations were the same,and soil sampling tests,field records,and yield testing were carried out according to the requirements of the plan.[Results]On the basis of 60 kg/ha of phosphorus and potassium fertilizer application,the optimum economical fertilizer application rate and the highest application rate of pure nitrogen were about 115.20 and 131.25 kg/ha,respectively.[Conclusions]This study is expected to provide a certain basis for the high-quality and high-yield summer peanuts in southern Shandong area.
基金Supported by the"11th Five-Year Plan"Significant Key Program of Guizhou Province[Guizhou Technology and Agriculture Co-word(2000)1109]Graduate Student Innovation Fund Project of Guizhou University[(2006)009]~~
文摘[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three factors, the 310 scheme was designed to study the effects of nitrogen application rate, density and seedling age on dry matter accumulation of no-tillage rape in seedling stage. [Result] With the increase of nitrogen application rate, density and seedling age, the dry matter content appeared like a parabola, increasing firstly and then declining. The change of nitrogen application rate caused greater influence than that of density and seedling age; the interaction effects between nitrogen application rate and density were greater than that between nitrogen application rate and seedling age as well as between density and seedling age. [Conclusion] Considered comprehensively, the dry matter content of no-tillage rape in seedling stage reached the highest level (4 768.2 kg/hm2) when the nitrogen application rate, the density and the seedling age were 195 kg/hm2, 93 000 plants/hm2 and 33 d, respectively.
基金supported by the National Natural Science Foundation of China(31971845 and 32101819)the earmarked fund for China Agriculture Research System(CARS-01-20)the China Postdoctoral Science Foundation(2021M691179)。
文摘Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.
基金supported by the Program of Chongqing Science and Technology Commission(cstc2020jcyj-msxmX0095)the Chongqing Municipal Key Laboratory of Institutions of Higher Education(WEPKL2018ZD-05)+2 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZDK202001203,KJZDK202003501)the Innovative Research Group of Universities in Chongqing(CXQTP19037)the Sustainable Development Research Centre of Three Gorges Reservoir Area(18sxxyjd11)。
文摘Effects of phosphorus(P)fertilizer application rate on soil transformation processes of P fraction are still unclear in the riparian zone.Purple alluvial soils in the riparian zone of the Three Gorges Reservoir were collected to conduct a 21-day incubation executed by two hydrological environments(drying and flooding)and ten application rates of P fertilizer.Transformation percentages of P fertilizer(TPPF)were calculated as content differences of soil P fractions between fertilizer addition and none fertilizer addition divided by soil total P increases caused by fertilizer addition.TPPF to inorganic P extracted by sodium hydroxide(NaOH-Pi)and hydrochloric acid(HCl-Pi)increase by 20.91%(9.71%)and 24.26%(40.72%)under the drying(flooding)environment.Instead,TPPF to the other fractions decrease.Phosphorus fertilizer input mainly has indirect positive and negative effects on organic P via precipitated P under the drying and flooding environments and finally has indirect positive effects on labile P(p<0.001).Percentage changes of water-soluble inorganic P(H2O-Pi)and HCl-Pi under the flooding environment are higher than that under the drying environment,and percentage changes of organic P extracted by sodium hydrogen carbonate(Na HCO3-Po)and NaOH-Pi show an opposite trend(p<0.01).?(differences in soil P fraction content between flooding and drying incubations)H2O-Pi is negatively correlated with?NaHCO3-Po,and?NaHCO3-Po is positively correlated with?NaOH-Pi(p<0.001).In conclusion,P fertilizer is transformed more into precipitated P than into other P fractions with an application rate increase.Phosphorus fertilizer input mainly increases organic P via precipitated P under the drying environment and decreases organic P via precipitated P under the flooding environment,and organic P is further transformed into labile P.With P fertilizer input,P release caused by flooding is derived from NaHCO3-Po release triggered by NaOH-Pi release.The results can be helpful for the understanding of P fertilizer migration processes from the riparian zone soil to the Three Gorges Reservoir under rain leaching and flooding.
基金supported by the Ministry of Agriculture of China(Grant No.2005-2009)
文摘The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different nitrogen application rates (120, 150, 180, and 210 kg/hm^2). The experiment was conducted on loam soil during 2004-2006 at the experimental farm of the China National Rice Research Institute in Hangzhou, China. In these years, the two hybrid rice cleady showed higher yield at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Guodao 6 produced an average grain yield of 10 215.6 kg/hm^2 across the three years, while the yield of Eryou 7954 was 9 633.0 kg/hm^2. With fewer plants per unit-area and larger plants in the plots, the two hybrid rice produced more panicles per plant in three years. The highest nitrogen uptake of the two hybrid rice was at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Further increasing nitrogen application rate was not advantageous for nitrogen uptake in super-high-yielding rice under the same plant density.
基金supported by the Sichuan Science and Technology Program,China(2020YFH0146 and 2022YFH0029).
文摘Lipid content has an important effect on rice eating quality,but the effects of fertilizer application rate on the lipid synthesis and eating quality of rice are not well understood.Potassium(K)has a strong influence on rice quality and the requirement for K fertilizer in rice is greater than for nitrogen(N)and phosphorus(P)fertilizers.To investigate the effects of K fertilizer on the lipid synthesis and eating quality of rice,we used Nanjing 9108(NJ9108,japonica)and IR72(indica)rice as experimental materials and four K levels:K0(0 kg ha^(-1)),K1(90 kg ha^(-1)),K2(135 kg ha^(-1))and K3(180 kg ha^(-1)).The results showed that the lipid content,free fatty acid(FFA)content,unsaturated fatty acid(UFA)content,malonyl-CoA(MCA)content,phosphatidic acid(PA)content,lipid synthesis-related enzyme activities and eating quality first increased and then decreased with increasing K in both cultivars.The maximum values were obtained under K2.However,the saturated fatty acid(SFA)content showed the opposite trend.No significant differences were found in pyruvate(PYR)content among the K treatments.The protein and oxaloacetic acid(OAA)contents and phosphoenolpyruvate carboxylase(PEPCase)activity of NJ9108 first decreased and then increased with increasing K,and the minimum values were obtained under K2;while IR72 showed the opposite trend and the maximum values were obtained under K1.Overall,increasing K optimized the fatty acid components and increased the lipid content and eating quality of rice by enhancing lipid synthesis-related enzyme activities and regulating substrate competition for lipid and protein synthesis.The optimal K application rate for lipid synthesis,eating quality and grain yield was 135 kg ha^(-1)for both cultivars.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2011BAD16B14,2012BAD20B05)the Agricultural Science and Technology Independent Innovation Funds of Jiangsu Province,China(CX(11)2011)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)
文摘The objective of this study was to determine the morphology mechanism of nitrogen (N) fertilizer rates and ratio on lodging resistance through analying its effects among lodging index (LI), lodging-related morphological traits and physical strength in basal intemodes by comparing japonica and indica super rice cultivars. Field experiments, with three nitrogen levels (0, 150 and 300 kg ha-L) and two ratios of basal to topdressing (8:2 and 5:5) with two super rice cultivars (Yliangyou 2 and Wuyunjing 23), were conducted in the Baolin Farm, Danyang Country, Jiangsu Province, China, in 2011 and 2012. Effects of N fertilizer rates and ratios on morphology of whole plant, morphology traits in basal intemodes and culm's physical strength parameters were investigated at 20 d after full heading stage. LI of Yliangyou 2 was significant greater than that of Wuyunjing 23 due to larger bending moment by whole plant (WP) with higher plant height and gravity center height. With higher volume of N fertilizer, LI of two super rice cultivars was increased conspicuously. However, no significant effect was detected with increase of panicle fertilizer ratio. The size of breaking strength (M) in basal intemodes was the key factor determining LI among N fertilizer treatments. Correlation analysis revealed that M value was positively related bending stress (BS) of Wuyunjing 23 and section modulus (Z) of Yliangyou 2, respectively. The higher N fertilizer levels induced reduction ofBS of Wuyunjing 23 due to weak culm and leaf sheath plumpness status and reduced Z of Yliangyou 2 owning to small diameter and culm wall thickness, consequently, influencing their M indirectly. These results suggested that breaking strength was the key factor influencing LI with increase of N fertilizer levels. However, the lodging-related morphology mechanism was different with genotypes. Culm wall thickness and diameter in basal internodes of indica super rice and culm and leaf sheath plumpness status of japonica super rice influenced breaking strength, as well as lodging index, respectively.
文摘This study was conducted wiffl a spring soybean variety Jindou 19 to test file effects of rhizobia inoculation or non-inoculation and nitrogen application rates at 0, 27, 54 and 75 kg/hm^2 (N1-4) on root nodule dry weight, root nodule number, yield and yield components of soybean. The results showed that the nitrogen fertilizer significantly affected soybean root noduce and soybean yield, the dry weight and number of root nodules increased gradually with the increase of nitrogen application rate, and the yield of file rhizobia inoculated treatment was significantly higher than that of file rhizobia non-inoculated treatment; and under file condition of file rhizobia inoculation, with nitrogen application amount at 75 kg/hm^2, file Jindou 19 performed a better nitrogen fixing effect in file growing stage, and its plot yield was 4 997.417 kg/hm^2, 4.06% higher than that of file treatment without inoculating rhizobium and 12.50% higher than that of the treatment without applying nitrogen fertilizer.
文摘To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency (Encf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient (Ra). Results from the pot experiments revealed a linear relationship between Ra and tissue N content as Ra = 4.74N-1.45 (R^2= 0.85, P 〈 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the Encf declined as the N application rate increased.
基金supported by the National Natural Science Foundation of China(41501238)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2015BAD23B03)the Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture,China(201003014-02-08)
文摘Excessive nitrogen(N) fertilization in intensive agricultural areas such as the plain region of South China has resulted in low nitrogen use efficiency and serious environmental problems. To determine the optimum N application rate, grain yield, apparent nitrogen recovery efficiency(ANRE), apparent N loss, and ammonium(NH_3) volatilization under different N application rates in the three years from 2012 to 2014 were studied. The results showed that the relationship between grain yields and N application rate in the three years were well fitted by quadratic equations. When N application rate reached 197 kg ha^(–1) in 2012, 199 kg ha^(–1) in 2013 and 196 kg ha^(–1) in 2014, the plateau of the grain yields appeared. With the increase of N application rate, the ANRE for rice decreased which could be expressed with sigmoidal equation; when N application rate was 305 kg ha^(–1) in 2012, 275 kg ha^(–1) in 2013 and 312 kg ha^(–1) in 2014, the curves of ANRE appeared turing points. Besides, the relationship between soil Nresidual and N application rate was fitted by the quadratic equation and the maximums of soil Nresidual were reached in the three years with the N application rate of 206, 244 and 170 kg ha^(–1), respectively. Statistical analysis indicated that NH3 volatilization and apparent N loss in three years all increased with the increasing N application rate. When the amount of NH3 volatilization increased to 11.6 kg N ha^(–1) in 2012, 40.5 kg N ha^(–1) in 2013 and 57.0 kg N ha^(–1)in 2014, the apparent N loss in the three years had obvious increase. To determine the optimum N application rate, the average N application on the plateau of the grain yield was considered as the lower limit while the average N application rate at the turning points of ANRE, the residual N in soil and apparent N loss was taken as the upper limit. According to the results in three years, the optimum N application rate for rice in Zhejiang was 197–255 kg ha^(–1).
基金supported by the National Key Research and Development Program of China(2016YFD0300109,2018YFD0200703)the National Natural Science Foundation of China(31771709)+2 种基金Jiangsu Agriculture Science and Technology Innovation Fund(CX[19]3056)the Priority Academic Program Development of Jiangsu Higher Education InstitutionsHigh-end Talent Support Program of Yangzhou University。
文摘High temperature(HT)during grain filling is one of the most important environmental factors limiting maize yield and grain quality.Nitrogen(N)fertilizer is essential for maintaining normal plant growth and defense against environmental stresses.The effects of three N rates and two temperature regimes on the grain yield and quality of fresh waxy maize were studied using the hybrids Suyunuo 5(SYN5)and Yunuo 7(YN7)as materials.N application rates were 1.5,4.5,and 7.5 g plant-1,representing low,moderate,and high N levels(LN,MN,and HN,respectively).Mean day/night temperatures during the grain filling of spring-and summer-sown plants were 27.6/21.0°C and 28.6/20.0°C for ambient temperature(AT)and 35/21.0°C and 35/20.0°C for HT,respectively.On average,HT reduced kernel number,weight,yield,and moisture content by 29.8%,17.9%,38.7%,and 3.3%,respectively.Kernel number,weight,yield,moisture,and starch contents were highest under MN among the three N rates under both temperature regimes.HT reduced grain starch content at all N levels.HT increased grain protein content,which gradually increased with N rate.Mean starch granule size under MN was larger(10.9μm)than that under LN and HN(both 10.4μm)at AT.However,the mean size of starch granules was higher under LN(11.7μm)and lower under MN(11.2μm)at HT.Iodine binding capacity(IBC)was lowest under MN and highest under HN among the three N levels under both temperature regimes.In general,IBC at all N rates was increased by HT.Peak viscosity(PV)was gradually reduced with increasing N rate at AT.In comparison with LN,PV was increased by MN and decreased by HN at HT.Retrogradation percentage gradually increased with N rate at AT,but was lowest under MN among the three N rates at HT.LN+AT and MN+HT produced grain with high pasting viscosity and low retrogradation tendency.MN application could alleviate the negative effects of HT on the grain yield and quality of fresh waxy maize.
基金the National Key R&D Program of China(2016YFD0300505)the Rice Industry Technology System of Henan Province,China(S201204-G02)。
文摘Nitrogen is one of the important factors for high yield of rice.Apart from high yield,high quality has become the current urgent demand for rice production.Grain-filling stage is crucial for rice yield and quality formation.However,the effect of nitrogen on grain-filling characteristics and the relationship of grain-filling characteristics and rice quality of mid-season indica rice were still unclear.A field experiment was carried out to ascertain the critical grain-filling characteristics that contribute to rice milling quality,appearance quality and cooking and eating quality under nitrogen applications.The results showed that nitrogen applications prolonged the duration of superior and inferior grain filling.The mean grainfilling rate(G_(mean))and the maximum grain-filling rate(G_(max))of the inferior grains were positively correlated with chalky kernel rate,chalkiness,and amylose content.The time reaching the maximum grain-filling rate(T_(max)G)of the inferior grains was positively correlated with brown rice rate,milled rice rate,and head milled rice rate.Chalky kernel rate and chalkiness were negatively correlated with peak paste viscosity and breakdown viscosity.Less amylose content and more crude protein content were detected in nitrogen application of Liangyoupei 9 and Y Liangyou 2 both in 2016 and 2017.According to the correlation analysis,better cooking and eating quality of Y Liangyou 2 which had less amylose content might result from its higher G_(max)and G_(mean)of inferior grain than that of Liangyoupei 9 in the treatments of nitrogen application.These results indicated that the prolonging grain-filling duration and increasing grain weight at the maximum grain-filling rate of inferior grains contributed to the improvement of milling quality,appearance quality,and cooking and eating quality of mid-season indica rice under appropriate nitrogen applications.
基金The study was funded by the National Natural Science Foundation of China(51809006 and 51079124).
文摘Faced with the scarcity of water resources and irrational fertilizer use,it is critical to supply plants with water and fertilizer in a coordinated pattern to improve yield with high water use efficiency(WUE).One such method,alternate partial root-zone irrigation(APRI),has been practiced worldwide,but there is limited information on the performance of different irrigation regimes and nitrogen(N)rates under APRI.The objectives of this study were to investigate the effects of varying irrigation regimes and N rates on shoot growth,grain yield and WUE of maize(Zea mays L.)grown under APRI in the Hexi Corridor area of Northwest China in 2014 and 2015.The three N rates were 100,200 and 300 kg N ha–1,designated N1,N2 and N3,respectively.The three irrigation regimes of 45–50%,60–65%and 75–80%field capacity(FC)throughout the maize growing season,designated W1,W2 and W3,respectively,were applied in combination with each N rate.The results showed that W2 and W3 significantly increased the plant height,stem diameter,crop growth rate,chlorophyll SPAD value,net photosynthetic rate(Pn),biomass,grain yield,ears per ha,kernels per cob,1000-kernel weight,harvest index,evapotranspiration and leaf area index(LAI)compared to W1 at each N rate.The N2 and N3 treatments increased those parameters compared to N1 in each irrigation treatment.Increasing the N rate from the N2 to N3 resulted in increased biomass and grain yield under W3 while it had no impact on those under the W1 and W2 treatments.The W3 N3 and W2 N2 and W2 N3 treatments achieved the greatest and the second-greatest biomass and grain yield,respectively.Increasing the N rate significantly enhanced the maximum LAI(LAI at the silking stage)and Pn under W3,suggesting that the interaction of irrigation and fertilizer N management can effectively improve leaf growth and development,and consequently provide high biomass and grain yield of maize.The W2 N2,W2 N3 and W3 N3 treatments attained the greatest WUE among all the treatments.Thus,either 60–65%FC coupled with 200–300 kg N ha–1 or 75–80%FC coupled with 300 kg N ha–1 is proposed as a better pattern of irrigation and nitrogen application with positive regulative effects on grain yield and WUE of maize under APRI in the Hexi Corridor area of Northwest China and other regions with similar environments.These results can provide a basis for indepth understanding of the mechanisms of grain yield and WUE to supply levels of water and nitrogen.
基金financially supported by the National Natural Science Foundation of China(30100108)the National Key Technologies R&D Program in Tenth Five Plan by the Ministry of Science and Technology,China(2002BA51A13).
文摘A pool experiment was carried out to study the effects of different nitrogen applicationstrategies (rates and stages of nitrogen application) on yield and forage nutritivequality of Zea mexicana cultivated in summer, 2002. In the whole growing stage, its stemwas clipped three times at the height of 25cm when it was 110cm high (H1, H2 and H3 standfor the first, second and third harvest stage, respectively). Six indexes includingcrude protein (CP), ether extract (EE), nitrogen free extract (NFE), acid detergentfiber (ADF), crude ash (CA), and general energy (GE) were employed to evaluate the foragenutritive value. The results showed that the content of CP and EE increased but thecontent of CA and ADF decreased under the two nitrogen rates (High-rate N, 600kgha-1;Mid-rate N, 300kgha-1). The fresh and dry harvest biomass of the whole plants on H1 andthose of the leaves on H2 were also improved. But the stalks on H2 and the whole plantson H3 were affected mainly by dressing nitrogen fertilizer. The yield of CP and EE, CA,NFE, and GE was mainly affected by nitrogen rates. The ADF yield increased was due to theincrement of the fresh and dry harvest biomass. Nitrogen applied as base fertilizer forsummer Zea mexicana can be harvested a higher biomass and improve the forage nutritivequality.
基金Supported by Science and Technology Project of Nantong City(JC2018032).
文摘The study adopted split block design with different treatment levels of density and fertilizer to investigate the growth period,population tiller dynamics,leaf area,dry matter accumulation,plant traits,panicle-grain structure,yielding ability and stress resistance of Tongjing 981 under different density and nitrogen fertilizer levels,so as to make clear the effects of different densities and nitrogen fertilizer levels on the population development and yield of Tongjing 981.The results showed that a too-low density was not conductive to the formation of sufficient number of panicles,and when the density was too high,it affected the number of grains per panicle and 1000-grain weight;and when nitrogen fertilizer was at a too-low level,it would restrict the population development,and a too-high nitrogen fertilizer easily led to the extension of the growth period and the aggravation of sheath blight.Reasonable density and fertilization level could make the development of individuals in Tongjing 981 population coordinated,and further help to establish a reasonable population structure,maintain a high leaf area and dry matter accumulation during the filling period,and balance the relationship of population dry matter weight with economic coefficient and panicle,grain and weight,thereby improving the population quality and yield of Tongjing 981.