The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and tra...The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and transformation rules of ammonia-nitrogen in three typical types of sand soil using the indoor leaching experiment of soil column, and then makes comparison with the indoor experiment results in combination with the numerical simulation method. The experiment process shows that the change in ammonia-nitrogen concentration goes through three stages including "removal-water saturation-saturation". As the contents of clay particles in soil sample increase, the removal of ammonia-nitrogen from soil sample will take more time and gain higher ratio. During the removal period, the removal ratio of Column 1, Column 2 and Column 3 averages 68.8%(1-12 d), 74.6%(1-22 d) and 91.1%(1-26 d). The ammonia-nitrogen removal ratio shows no noticeable change as the depth of soil columns varies. But it is found that the ammonia-nitrogen removal ratio is the least of the whole experiment when the soil columns are at the depth of 15 cm. It can be preliminary inferred that the natural purifying performance of soil along the river for ammonia-nitrogen in river water mainly depends on the proportion of fine particles in soil. HYDRUS-1D model is used to simulate this experiment process, analyze the change of the bottom observation holes by time and depth in three columns(the tenth day), and make comparison with the experiment result. The coefficients of determination for fitting curves of Column 1, Column 2 and Column 3 are 0.953, 0.909, 0.882 and 0.955, 0.740, 0.980 separately. Besides, this paper examines the contribution of absorption, mineralization and nitrification in the simulation process. In the early removal stage, mineralization plays a dominant role and the maximum contribution rate of mineralization is 99%. As time goes by, absorption starts to function and gradually assumes a dominant position. In the middle and late removal stage, nitrification in Column 1 and Column 2 makes more contribution than mineralization. So the experiment result of the ammonia-nitrogen concentration is 0.6% and 2.4% lower than that in effluent and the maximum contribution ratio of nitrification is -4.53% and -5.10% respectively when only the function of absorption is considered. The mineralization in Column 1 and Column 2 in the middle and late removal stage still plays a more important role than nitrification. So the experiment result is 1.4% higher than that in effluent and the maximum contribution ratio of nitrification is -2.51% when only the function of absorption is considered. Therefore, absorption, mineralization and nitrification make different contributions during different part of the stage. This means that the natural purifying performance of soil along the river for ammonia-nitrogen in river water not only depends on the proportion of fine particles in soil, but depends on the mineralization and nitrification environment. This can offer some insights into the protection and recovery of groundwater along the riverbank.展开更多
The study focuses on the absorption rates of NO2, SO2 and a mixture of these two acid gases into urea solution in packed bed column. The absorption rate was studied as a function of absorbent temperature, urea concent...The study focuses on the absorption rates of NO2, SO2 and a mixture of these two acid gases into urea solution in packed bed column. The absorption rate was studied as a function of absorbent temperature, urea concentration and acid gas concentration. The influence of liquid temperature between 10 - 40?C, urea concentration between 0.1 - 0.5 M and acid gas concentration NO2 between 100 - 1000 ppm (191 - 1910 mg/m3), SO2 between 500 - 2500 ppm (1310 - 6530 mg/m3) were investigated. The mass gas flow rate of 20.646 (kg/m2.min) at 25?C and the absorption rate were determined by measuring the NO2 and SO2 concentrations in the inlet and outlet streams of the absorptioncolumn. The absorption rate of SO2 increases with the decrease of temperature of absorbent (urea solution) and with the increase of the urea concentration. The presence of NO2 in the effluent gas stream lowers the absorption rate of SO2 in urea solution due to the fast reaction of NO2 with urea as compared with SO2. The absorption rate of NO2 decreases as the urea concentration exceeds 0.4 mol/l and for NO2 gas concentration of 100 ppm due to the decrease the diffusivity of the gas. The experimental data were analyzed using dimensionless analysis to find the correlation of mass transfer coefficient in the packed column Sh (H / dp)1.2 = 4.19*10–2 *(G' dp / μg)0.87 (μg / ρg DAB)0.60 The results confirmed the hypothesis that the absorption is accompanied with chemical reaction. Also it is found the increasing the temperature of absorbent solution the absorption rate of two gases is decreases. The mass transfer coefficient models are in good agreements with the Kramer’s equation.展开更多
选用3种生物滞留池基质(砂壤土∶木屑∶轮胎颗粒=50%∶30%∶20%(质量比,下同)、砂壤土∶木屑∶轮胎颗粒∶石灰石=50%∶30%∶10%∶10%、砂壤土=100%(基准对照))(分别记为基质1~基质3)进行材料特性分析和过滤柱实验。结果表明,水温9.5~15....选用3种生物滞留池基质(砂壤土∶木屑∶轮胎颗粒=50%∶30%∶20%(质量比,下同)、砂壤土∶木屑∶轮胎颗粒∶石灰石=50%∶30%∶10%∶10%、砂壤土=100%(基准对照))(分别记为基质1~基质3)进行材料特性分析和过滤柱实验。结果表明,水温9.5~15.5℃,pH为7.56~7.95,流速1.23 m L/min时,基质1和基质2作为生物滞留池基质可有效去除径流中营养盐,对TN、NO_-~3-N、NH_4^+-N、TP的去除率超过82.72%,92.87%,70.70%,74.24%,相较于基质3,分别可提高约为41%,52%,32%,48%;基质2对TN、NO_-~3-N、NH_4^+-N的去除效果优于基质1,基质1对TP的去除效果优于基质2;不考虑植物作用,基质高度60 cm时,对氮、磷营养盐去除效果最好。展开更多
基金supported by Special Scientific Research Expenditure for Public Charity Industry of Ministry of Water Resources(No.201501008)Institute of Resources and Environment of North China University of Water Resources and Electric Power
文摘The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and transformation rules of ammonia-nitrogen in three typical types of sand soil using the indoor leaching experiment of soil column, and then makes comparison with the indoor experiment results in combination with the numerical simulation method. The experiment process shows that the change in ammonia-nitrogen concentration goes through three stages including "removal-water saturation-saturation". As the contents of clay particles in soil sample increase, the removal of ammonia-nitrogen from soil sample will take more time and gain higher ratio. During the removal period, the removal ratio of Column 1, Column 2 and Column 3 averages 68.8%(1-12 d), 74.6%(1-22 d) and 91.1%(1-26 d). The ammonia-nitrogen removal ratio shows no noticeable change as the depth of soil columns varies. But it is found that the ammonia-nitrogen removal ratio is the least of the whole experiment when the soil columns are at the depth of 15 cm. It can be preliminary inferred that the natural purifying performance of soil along the river for ammonia-nitrogen in river water mainly depends on the proportion of fine particles in soil. HYDRUS-1D model is used to simulate this experiment process, analyze the change of the bottom observation holes by time and depth in three columns(the tenth day), and make comparison with the experiment result. The coefficients of determination for fitting curves of Column 1, Column 2 and Column 3 are 0.953, 0.909, 0.882 and 0.955, 0.740, 0.980 separately. Besides, this paper examines the contribution of absorption, mineralization and nitrification in the simulation process. In the early removal stage, mineralization plays a dominant role and the maximum contribution rate of mineralization is 99%. As time goes by, absorption starts to function and gradually assumes a dominant position. In the middle and late removal stage, nitrification in Column 1 and Column 2 makes more contribution than mineralization. So the experiment result of the ammonia-nitrogen concentration is 0.6% and 2.4% lower than that in effluent and the maximum contribution ratio of nitrification is -4.53% and -5.10% respectively when only the function of absorption is considered. The mineralization in Column 1 and Column 2 in the middle and late removal stage still plays a more important role than nitrification. So the experiment result is 1.4% higher than that in effluent and the maximum contribution ratio of nitrification is -2.51% when only the function of absorption is considered. Therefore, absorption, mineralization and nitrification make different contributions during different part of the stage. This means that the natural purifying performance of soil along the river for ammonia-nitrogen in river water not only depends on the proportion of fine particles in soil, but depends on the mineralization and nitrification environment. This can offer some insights into the protection and recovery of groundwater along the riverbank.
文摘The study focuses on the absorption rates of NO2, SO2 and a mixture of these two acid gases into urea solution in packed bed column. The absorption rate was studied as a function of absorbent temperature, urea concentration and acid gas concentration. The influence of liquid temperature between 10 - 40?C, urea concentration between 0.1 - 0.5 M and acid gas concentration NO2 between 100 - 1000 ppm (191 - 1910 mg/m3), SO2 between 500 - 2500 ppm (1310 - 6530 mg/m3) were investigated. The mass gas flow rate of 20.646 (kg/m2.min) at 25?C and the absorption rate were determined by measuring the NO2 and SO2 concentrations in the inlet and outlet streams of the absorptioncolumn. The absorption rate of SO2 increases with the decrease of temperature of absorbent (urea solution) and with the increase of the urea concentration. The presence of NO2 in the effluent gas stream lowers the absorption rate of SO2 in urea solution due to the fast reaction of NO2 with urea as compared with SO2. The absorption rate of NO2 decreases as the urea concentration exceeds 0.4 mol/l and for NO2 gas concentration of 100 ppm due to the decrease the diffusivity of the gas. The experimental data were analyzed using dimensionless analysis to find the correlation of mass transfer coefficient in the packed column Sh (H / dp)1.2 = 4.19*10–2 *(G' dp / μg)0.87 (μg / ρg DAB)0.60 The results confirmed the hypothesis that the absorption is accompanied with chemical reaction. Also it is found the increasing the temperature of absorbent solution the absorption rate of two gases is decreases. The mass transfer coefficient models are in good agreements with the Kramer’s equation.
文摘选用3种生物滞留池基质(砂壤土∶木屑∶轮胎颗粒=50%∶30%∶20%(质量比,下同)、砂壤土∶木屑∶轮胎颗粒∶石灰石=50%∶30%∶10%∶10%、砂壤土=100%(基准对照))(分别记为基质1~基质3)进行材料特性分析和过滤柱实验。结果表明,水温9.5~15.5℃,pH为7.56~7.95,流速1.23 m L/min时,基质1和基质2作为生物滞留池基质可有效去除径流中营养盐,对TN、NO_-~3-N、NH_4^+-N、TP的去除率超过82.72%,92.87%,70.70%,74.24%,相较于基质3,分别可提高约为41%,52%,32%,48%;基质2对TN、NO_-~3-N、NH_4^+-N的去除效果优于基质1,基质1对TP的去除效果优于基质2;不考虑植物作用,基质高度60 cm时,对氮、磷营养盐去除效果最好。