期刊文献+
共找到239篇文章
< 1 2 12 >
每页显示 20 50 100
Electronic properties of graphene nanoribbon doped by boron/nitrogen pair:a first-principles study 被引量:7
1
作者 肖金 杨志雄 +3 位作者 谢伟涛 肖立新 徐慧 欧阳方平 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期450-456,共7页
By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at ... By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device. 展开更多
关键词 graphene nanoribbons boron/nitrogen pairs doping electronic properties firstprinciples
下载PDF
Electrostatic self-assembly of CdS nanowires-nitrogen doped graphene nanocomposites for enhanced visible light photocatalysis 被引量:1
2
作者 Bin Han Siqi Liu +1 位作者 Zi-Rong Tang Yi-Jun Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期145-156,共12页
CdS nanowires-nitrogen doped graphene (CdS NWs-NGR) nanocomposites have been fabricated by an electrostatic self-assembly strategy followed by a hydrothermal reduction. The CdS NWs-NGR exhibits higher photoactivity ... CdS nanowires-nitrogen doped graphene (CdS NWs-NGR) nanocomposites have been fabricated by an electrostatic self-assembly strategy followed by a hydrothermal reduction. The CdS NWs-NGR exhibits higher photoactivity for selective reduction of aromatic nitro organics in water under visible light irradiation than blank CdS nanowires (CdS NWs) and CdS nanowires-reduced graphene oxide (CdS NWs-RGO) nanocomposites. The enhanced photoactivity of CdS NWs-NGR can be attributed to the improved electronic conductivity due to the introduc- tion of nitrogen atoms, which thus enhances the separation and transfer of charge carriers photogenerated from CdS NWs. Our work could provide a facile method to synthesize NGR based one-dimensional (1D) semiconductor composites for selective organic transformations, and broaden the potential applications for NGR as a cocatalyst. 展开更多
关键词 nitrogen doping graphene CdS nanowire photocatalytic organic synthesis visible light
下载PDF
Atomic Layer Coated Al_(2)O_(3) on Nitrogen Doped Vertical Graphene Nanosheets for High Performance Sodium Ion Batteries 被引量:2
3
作者 Zhiheng Wu Xiangdan Zhang +4 位作者 Lijun Deng Yongshang Zhang Zhuo Wang Yonglong Shen Guosheng Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期285-294,共10页
Heteroatom doped graphene materials are considered as promising anode for high-performance sodium-ion batteries(SIBs).Defective and porous structure especially with large specific surface area is generally considered ... Heteroatom doped graphene materials are considered as promising anode for high-performance sodium-ion batteries(SIBs).Defective and porous structure especially with large specific surface area is generally considered as a feasible strategy to boost reaction kinetics;however,the unwanted side reaction at the anode hinders the practical application of SIBs.In this work,a precisely controlled Al_(2)O_(3)coated nitrogen doped vertical graphene nanosheets(NVG)anode material has been proposed,which exhibits excellent sodium storage capacity and cycling stability.The ultrathin Al_(2)O_(3)coating on the NVG is considered to help construct an advantageous interface between electrode and electrolyte,both alleviating the electrolyte decomposition and enhancing sodium adsorption ability.As a result,the optimal Al_(2)O_(3)coated NVG materials delivers a high reversible capacity(835.0 mAh g^(-1))and superior cycling stability(retention of 92.3%after 5000 cycles).This work demonstrates a new way to design graphene-based anode materials for highperformance sodium-ion batteries. 展开更多
关键词 Al_(2)O_(3) nitrogen doped vertical graphene nanosheets reaction kinetics sodium-ion batteries
下载PDF
Nitrogen Doped Graphene as Potential Material for Hydrogen Storage 被引量:1
4
作者 Arjunan Ariharan Balasubramanian Viswanathan Vaiyapuri Nandhakumar 《Graphene》 2017年第2期41-60,共20页
The nitrogen doped graphene was synthesized by hydrothermal route utilizing 2-Chloroethylamine hydrochloride as nitrogen precursor in the presence of graphene oxide (GO). Nitrogen-doped graphene material is developed ... The nitrogen doped graphene was synthesized by hydrothermal route utilizing 2-Chloroethylamine hydrochloride as nitrogen precursor in the presence of graphene oxide (GO). Nitrogen-doped graphene material is developed for its application in hydrogen storage at room temperature. Nitrogen doped graphene layered material shows ~1.5 wt% hydrogen storage capacity achieved at room temperature and 90 bar pressure. 展开更多
关键词 CARBON MATERIALS HYDROGEN STORAGE graphene Heteroatom doped graphene nitrogen doped graphene HYDROGEN STORAGE Capacity The STORAGE Capacity Observed Is Comparable to Other CARBON MATERIALS
下载PDF
Novel Formaldehyde Sensor based on Hydrogen Peroxide/Melamine Modulated Photoluminescence of Nitrogen-doped Graphene Quantum Dots
5
作者 张玉 SU Xingguang 马强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1481-1486,共6页
A modulated photoluminescence nanosensor was developed for the quantitative detection of formaldehyde with nitrogen-doped graphene quantum dots and melamine. The sensing system was based on the different activated eff... A modulated photoluminescence nanosensor was developed for the quantitative detection of formaldehyde with nitrogen-doped graphene quantum dots and melamine. The sensing system was based on the different activated effects of melamine and hydrogen peroxide on the photoluminescence intensity of nitrogendoped graphene quantum dots. Under the optimal conditions, the modulated photoluminescence sensing system can be used to detect formaldehyde with a good linear relationship between the nitrogen-doped graphene quantum dots photoluminescence difference and the concentration of formaldehyde. The novel sensing system provided new directions for the detection of formaldehyde with high selectivity and quick response. 展开更多
关键词 NANOSENSOR modulated photoluminescence nitrogen-doped graphene quantum dots formaldehyde sensing
下载PDF
Modified Nitrogen-Doped Graphene Electrocatalyst for Oxygen Reduction Reaction in Alkaline Fuel Cells
6
作者 Dureid Qazzazie Michaela Beckert +2 位作者 Rolf Mtilhaupt Olena Yurchenko Gerald Urban 《Journal of Energy and Power Engineering》 2015年第10期886-895,共10页
关键词 碱性燃料电池 电催化剂 氧还原反应 掺杂石墨 改性石墨 透射电子显微镜 X射线光电子能谱 扫描电子显微镜
下载PDF
Doped graphene/carbon black hybrid catalyst giving enhanced oxygen reduction reaction activity with high resistance to corrosion in proton exchange membrane fuel cells 被引量:3
7
作者 Zhaoqi Ji Jianuo Chen +6 位作者 María Pérez-Page Zunmin Guo Ziyu Zhao Rongsheng Cai Maxwell T.P.Rigby Sarah J.Haigh Stuart M.Holmes 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期143-153,共11页
Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows th... Nitrogen doping of the carbon is an important method to improve the performance and durability of catalysts for proton exchange membrane fuel cells by platinum–nitrogen and carbon–nitrogen bonds. This study shows that p-phenyl groups and graphitic N acting bridges linking platinum and the graphene/carbon black(the ratio graphene/carbon black = 2/3) hybrid support materials achieved the average size of platinum nanoparticles with(4.88 ± 1.79) nm. It improved the performance of the lower-temperature hydrogen fuel cell up to 0.934 W cm^(-2) at 0.60 V, which is 1.55 times greater than that of commercial Pt/C. Doping also enhanced the interaction between Pt and the support materials, and the resistance to corrosion, thus improving the durability of the low-temperature hydrogen fuel cell with a much lower decay of 10 mV at 0.80 A cm^(-2) after 30 k cycles of an in-situ accelerated stress test of catalyst degradation than that of 92 mV in Pt/C, which achieves the target of Department of Energy(<30 mV). Meanwhile,Pt/Nr EGO_(2)-CB_(3) remains 78% of initial power density at 1.5 A cm^(-2) after 5 k cycles of in-situ accelerated stress test of carbon corrosion, which is more stable than the power density of commercial Pt/C, keeping only 54% after accelerated stress test. 展开更多
关键词 nitrogen doped graphene Low-temperature hydrogen fuel cell Catalyst degradation Carbon corrosion
下载PDF
Facile Synthesis of N-Doped Graphene-Like Carbon Nanoflakes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction 被引量:7
8
作者 Daguo Gu Yao Zhou +3 位作者 Ruguang Ma Fangfang Wang Qian Liu Jiacheng Wang 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期114-125,共12页
A series of N-doped carbon materials(NCs)were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile onestep pyrolysis method. The characterization of microstructural featur... A series of N-doped carbon materials(NCs)were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile onestep pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C_3N_4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6,show the highest N content of ~6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of ~66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal–air batteries. 展开更多
关键词 nitrogen doping graphene-like Carbon nanoflakes ELECTROCATALYST Oxygen reduction reaction
下载PDF
Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries 被引量:12
9
作者 Jia-Le Shi Cheng Tang +2 位作者 Jia-Qi Huang Wancheng Zhu Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo... The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage. 展开更多
关键词 nitrogen-doped graphene Chemical vapor deposition Oxygen reduction reaction Lithium-sulfur battery Porous carbon materials Exposure of active sites
下载PDF
Electronic Transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between Nitrogen Doping Armchair Graphene Nanoribbon Electrodes
10
作者 叶萌 夏蔡娟 +4 位作者 杨爱云 张博群 苏耀恒 涂喆研 马越 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期71-74,共4页
We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-princ... We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-principles method based on density functional theory. Among the three models M1–M3, M1 is not doped with a heteroatom. In the left parts of M2 and M3, nitrogen atoms are doped at two edges of the nanoribbon. In the right parts, nitrogen atoms are doped at one center and at the edges of M2 and M3, respectively. Comparisons of M1, M2 and M3 show obvious rectifying characteristics, and the maximum rectification ratios are up to 42.9 in M2. The results show that the rectifying behavior is strongly dependent on the doping position of electrodes. A higher rectification ratio can be found in the dipyrimidinyl-diphenyl molecular device with asymmetric doping of left and right electrodes, which suggests that this system has a broader application in future logic and memory devices. 展开更多
关键词 Electronic Transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between nitrogen Doping Armchair graphene Nanoribbon Electrodes NDR
下载PDF
Construction of three-dimensional hierarchical porous nitrogen-doped re duce d graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption 被引量:8
11
作者 Jing Xu Ruiwen Shu +1 位作者 Zongli Wan Jianjun Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期193-200,共8页
The development of graphene-based composites with low density,robust absorption,wide bandwidth and thin thickness remained a great challenge in the field of electromagnetic(EM)absorption.In this work,nitrogen-doped re... The development of graphene-based composites with low density,robust absorption,wide bandwidth and thin thickness remained a great challenge in the field of electromagnetic(EM)absorption.In this work,nitrogen-doped reduced graphene oxide/hollow cobalt ferrite(NRGO/hollow CoFe_(2)O_(4))composite aerogels were constructed by a solvothermal and hydrothermal two-step route.Results demonstrated that the as-fabricated composite aerogels had the ultralow density and a unique three-dimensional(3D)network structure,and lots of hollow CoFe_(2)O_(4)microspheres were almost homogeneously distributed on the wrinkled surfaces of lamellar NRGO.Moreover,superior EM absorbing capacity could be achieved by modulating the ferrite structure,addition amounts of hollow CoFe_(2)O_(4)and thicknesses.It was noteworthy that the NRGO/hollow CoFe_(2)O_(4)composite aerogel with the addition amount of ferrite of 15.0 mg pos-sessed the minimum reflection loss of-44.7 dB and maximum absorption bandwidth of 5.2 GHz(from 12.6 to 17.8 GHz)at a very thin thickness of 1.8 mm and filling ratio of 15.0 wt.%.Furthermore,the possible EM attenuation mechanism had been proposed.The results of this work would be helpful for developing RGO-based 3D composites as lightweight,thin and highly efficient EM wave absorbers. 展开更多
关键词 graphene Composite aerogels Hollow ferrite Three-dimensional network nitrogen doping
原文传递
Enhanced nitrogen electroreduction performance by the reorganization of local coordination environment of supported single atom on N(O)-dual-doped graphene
12
作者 Zhiqiang Bai Wenhua Zhang Yufang Liu 《Nano Research》 SCIE EI CSCD 2023年第7期9099-9106,共8页
Developing stable and efficient catalysts for the electroreduction of nitrogen remains a huge challenge and single atom catalysts(SACs)are expected to achieve relatively high ammonia selectivity at low applied potenti... Developing stable and efficient catalysts for the electroreduction of nitrogen remains a huge challenge and single atom catalysts(SACs)are expected to achieve relatively high ammonia selectivity at low applied potential.Based on density functional theory calculations,the potential application of 27 single transition metal(TM=Sc-Zn,Y-Ag,Hf-Au)atoms supported by N(O)-dualdoped graphene(TM-O_(2)N_(2)/G)for the electroreduction of nitrogen is intensively investigated.At low nitrogen coverage,W(Mo,Nb,Ta)-O_(2)N_(2)/G are predicted to yield low ammonia selectivity(<13%)at limiting-potential of-0.58,-0.53,-0.56,and-0.76 V starting from adsorbed nitrogen with side-on mode,respectively.With the increasing N_(2)coverage,the TM-O_(2)N_(2)/G is reconstructed as TM-(N_(2))2N_(2)/graphene.The electroreduction of nitrogen proceeds from end-on adsorbed nitrogen molecule with high ammonia selectivity,and the limiting-potentials are theoretically predicted as-0.20,-0.40,-0.29,and-0.21 V on W(Mo,Nb,Ta)-(N_(2))2N_(2)/G,respectively.It is suggested that utilizing the reorganization of local coordination environments of SACs by high coverage of reactant molecules under reaction condition can not only enhance the activity at lower limiting-potential but also improve the ammonia selectivity. 展开更多
关键词 nitrogen reduction reaction single atom catalysis local structure reorganization doped graphene ELECTROREDUCTION
原文传递
Charge Engineering of Mo2C@Defect-Rich N-Doped Carbon Nanosheets for Efficient Electrocatalytic H2 Evolution 被引量:5
13
作者 Chunsheng Lei Wen Zhou +4 位作者 Qingguo Feng Yongpeng Lei Yi Zhang Yin Chen Jiaqian Qin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期155-164,共10页
Charge engineering of carbon materials with many defects shows great potential in electrocatalysis,and molybdenum carbide(Mo2C)is one of the noble-metal-free electrocatalysts with the most potential.Herein,we study th... Charge engineering of carbon materials with many defects shows great potential in electrocatalysis,and molybdenum carbide(Mo2C)is one of the noble-metal-free electrocatalysts with the most potential.Herein,we study the Mo2C on pyridinic nitrogen-doped defective carbon sheets(MoNCs)as catalysts for the hydrogen evolution reaction.Theoretical calculations imply that the introduction of Mo2C produces a graphene wave structure,which in some senses behaves like N doping to form localized charges.Being an active electrocatalyst,MoNCs demonstrate a Tafel slope as low as 60.6 mV dec-1 and high durability of up to 10 h in acidic media.Besides charge engineering,plentiful defects and hierarchical morphology also contribute to good performance.This work underlines the importance of charge engineering to boost catalytic performance. 展开更多
关键词 Molybdenum carbide nitrogen-doped CARBON NANOSHEETS CHARGE ENGINEERING graphene wave Hydrogen EVOLUTION reaction
下载PDF
氮磷石墨烯的制备及在聚合物中的应用进展
14
作者 李玉峰 刘丽爽 +3 位作者 赵阳 冯峰 肖添远 景峰 《塑料》 CAS CSCD 北大核心 2024年第4期50-54,110,共6页
近年来,石墨烯由于具有稳定性好、比表面积大、载流子迁移率高等较好的性能而备受关注。杂原子掺杂可以调整石墨烯的结构,提高其性能。其中,氮原子(N)掺杂可以诱导碳原子产生带正电荷的位点,提高石墨烯的电导率;磷原子(P)掺杂能够使石... 近年来,石墨烯由于具有稳定性好、比表面积大、载流子迁移率高等较好的性能而备受关注。杂原子掺杂可以调整石墨烯的结构,提高其性能。其中,氮原子(N)掺杂可以诱导碳原子产生带正电荷的位点,提高石墨烯的电导率;磷原子(P)掺杂能够使石墨烯片层高度扭曲褶皱,有效地增大石墨烯的比表面积。将氮掺杂石墨烯(NGO)或磷掺杂石墨烯(PGO)引入到聚合物中,能有效地提高聚合物的综合性能,拓宽聚合物的应用领域。综述了制备NGO和PGO的主要方法,分析比较了各种制备方法的特点及缺陷;总结了其聚合物复合材料在传感器、电池和电容器、阻燃、防腐蚀及分离膜等领域的应用现状;阐述了其在提升聚合物导电性、催化活性、热稳定性、力学性能及防腐蚀性能等方面的研究进展。 展开更多
关键词 氮掺杂 磷掺杂 石墨烯 聚合物 进展
下载PDF
Nitrogen-doped graphene nanosheets as high efficient catalysts for oxygen reduction reaction 被引量:7
15
作者 CI SuQin WU YongMin +4 位作者 ZOU JianPing TANG LongHua LUO ShengLian LI JingHong WEN ZhenHai 《Chinese Science Bulletin》 SCIE EI CAS 2012年第23期3065-3070,共6页
It is of great significance in exploring alternative catalysts to platinum (Pt)-based materials for oxygen reduction reaction (ORR),because this reaction is invariably involved in various fuel cells and metal-air batt... It is of great significance in exploring alternative catalysts to platinum (Pt)-based materials for oxygen reduction reaction (ORR),because this reaction is invariably involved in various fuel cells and metal-air batteries.We herein reported the nitrogen doped graphene nanosheets (NGNSs) with pore volume of as high as 3.42 m 3 /g and investigated their potential application as ORR catalysts,it was demonstrated the NGNSs featured high activity,improved kinetics and excellent long-term stability for ORR.The NGNSs were successfully used as cathode catalysts of microbial fuel cells (MFCs) and performed even better than the commercial Pt/C (Pt 10%) catalysts at the maximum power output. 展开更多
关键词 nitrogen doped graphene OXYGEN reduction reaction CATHODE CATALYSTS MICROBIAL fuel cell
原文传递
A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility 被引量:2
16
作者 Yayuan Liu Haotian Wang +4 位作者 Dingchang Lin Jie Zhao Chong Liu Jin Xie Yi Cui 《Nano Research》 SCIE EI CAS CSCD 2017年第4期1213-1222,共10页
Developing high-performance nonprecious-metal electrocatalysts for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy conversion and storage systems. Toward that end, rational catalyst ... Developing high-performance nonprecious-metal electrocatalysts for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy conversion and storage systems. Toward that end, rational catalyst design principles that lead to highly active catalytic centers and enhanced active site accessibility are undoubtedly of paramount importance. Here, we used Prussian blue nano- particles to anchor Fe/Fe3C species to nitrogen-doped reduced graphene oxide aerogels as ORR catalysts. The strong interaction between nanosized Fe3C and the graphitic carbon shell led to synergistic effects in the ORR, and the protection of the carbon shell guaranteed stability of the catalyst. As a result, the aerogel electrocatalyst displayed outstanding activity in the ORR on par with the state-of-the-art Pt/C catalyst at the same mass loading in alkaline media, good performance in acidic media, and excellent stability and crossover tolerance that rivaled that of the best nonprecious-metal ORR electrocatalysts reported to date. 展开更多
关键词 oxygen reduction reaction Prussian blue nanoparticles reduced graphene oxide aerogel nitrogen doping
原文传递
Nitrogen-doped graphene supported Pd@PdO core- shell clusters for C-C coupling reactions 被引量:7
17
作者 Baojiang Jiang Sanzhao Song +6 位作者 Jianqiang Wang Ying Xie Wenyi Chu Hongfeng Li Hui Xu Chungui Tian Honggang Fu 《Nano Research》 SCIE EI CAS CSCD 2014年第9期1280-1290,共11页
关键词 交叉偶联反应 掺杂石墨 PDO 氮气 X射线光电子能谱 X射线吸收光谱 复合催化剂 负载
原文传递
Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane 被引量:16
18
作者 Wee-Jun Ong Lling-Lling Tan +2 位作者 Siang-Piao Chai Siek-Ting Yong Abdul Rahman Mohamed 《Nano Research》 SCIE EI CAS CSCD 2014年第10期1528-1547,共20页
明确的锐钛矿 TiO 的定制的合成 < 潜水艇 class= “ a-plus-plus ” > 2 </sub>-based 晶体与暴露 { 001 } 方面刺激了由于他们的科学、工艺的重要性世界范围的连续研究兴趣。此处,锐钛矿做氮的 TiO <潜水艇class=“ a... 明确的锐钛矿 TiO 的定制的合成 < 潜水艇 class= “ a-plus-plus ” > 2 </sub>-based 晶体与暴露 { 001 } 方面刺激了由于他们的科学、工艺的重要性世界范围的连续研究兴趣。此处,锐钛矿做氮的 TiO <潜水艇class=“ a-plus-plus ”> 2 </sub>( N-TiO <潜水艇class=“ a-plus-plus ”> 2 </sub>) nanoparticles 与暴露{ 001 }方面在 graphene ( GR )上扔了表( N-TiO <潜水艇class=“ a-plus-plus ”> 2 </sub>-001/GR)第一次被综合经由一步舞 solvothermal 用 NH 的合成线路<潜水艇class=“ a-plus-plus ”> 4 </sub > F 作为控制形态学的代理人。试验性的结果例示那 GR 一致地被锐钛矿 N-TiO 盖住 < 潜水艇 class= “ a-plus-plus ” > 2 </sub> nanoparticles (1017 nm ) ,暴露 { 001 } 方面。百分比暴露 { 001 } 在 N-TiO 的方面 < 潜水艇 class= “ a-plus-plus ” > 2 </sub>-001/GR nanocomposites 被计算是 ca。35% 。另外,在吸收边的红移动和在可见轻范围的强壮的吸收由于 Ti-O-C 契约的形成被观察,导致从 3.23 ~ 2.9 eV 的乐队差距的成功的变窄。同样准备的光催化剂的 photocatalytic 活动为公司被评估<潜水艇class=“ a-plus-plus ”>生产 CH 的 2 </sub>减小<潜水艇class=“ a-plus-plus ”> 4 </sub>面对在周围的温度和气压用下面的水蒸汽一低力量 15 W 节省精力的日光灯作为可见到最通常采用的高力量的氙 lampswhich 的轻 sourcein 对比经济地并且实际上显示了这个过程可行。在所有学习光催化剂之中, N-TiO < 潜水艇 class= “ a-plus-plus ” > 2 </sub>-001/GR nanocomposites 展出了最大的 CH < 潜水艇 class= “ a-plus-plus ” > 3.70 摩尔的 4 </sub> 产量?? 展开更多
关键词 光催化活性 二氧化钛 氮掺杂 石墨 纳米结构 甲烷氧化 二氧化碳 自组装
原文传递
Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature 被引量:6
19
作者 Xiaoqiong Du Chao Liu +3 位作者 Cheng Du Ping Cai Gongzhen Cheng Wei Luo 《Nano Research》 SCIE EI CAS CSCD 2017年第8期2856-2865,共10页
The safe and efficient storage and release of hydrogen is one of the key technological challenges for the fuel cell-based hydrogen economy. Hydrazine monohydrate has attracted considerable attention as a safe and conv... The safe and efficient storage and release of hydrogen is one of the key technological challenges for the fuel cell-based hydrogen economy. Hydrazine monohydrate has attracted considerable attention as a safe and convent chemical hydrogen-storage material. Herein, we report the facile synthesis of NiPt-CeOx nanocomposites supported by three-dimensional nitrogen-doped graphene hydrogels (NGHs) via a simple one-step co-reduction synthesis method. These catalysts were composition-dependent for hydrogen generation from an alkaline solution of hydrazine. (NisPt5)I-(CeOx)0.B/NGH exhibited the highest catalytic activity, with 100% hydrogen selectivity and turnover frequencies of 408 h^-1 at 298 K and 3,064 h^-1 at 323 K. These superior catalytic performances are attributed to the electronic structure of the NiPt centers, which was modified by the electron interaction between NiPt and CeOx and the strong metal-support interaction between NiPt-CeOx and the NGH. 展开更多
关键词 nitrogen-doped graphene hydrogels NiPt-CeOx hydrogen storage HYDRAZINE
原文传递
Nitrogen-doped graphene nanosheets as reactive water purification membranes 被引量:5
20
作者 Yanbiao Liu Ling Yu +1 位作者 Choon Nam Ong Jianping Xie 《Nano Research》 SCIE EI CAS CSCD 2016年第7期1983-1993,共11页
Oxidation of organic pollutants by sulfate radicals produced via activation of persulfate has emerged as a promising advanced oxidation technology to address various challenging environmental issues. The development o... Oxidation of organic pollutants by sulfate radicals produced via activation of persulfate has emerged as a promising advanced oxidation technology to address various challenging environmental issues. The development of an effective, environmentally-friendly, metal-free catalyst is the key to this technology. Additionally, a supported catalyst design is more advantageous than conventional suspended powder catalysts from the point of view of mass transfer and practical engineering applications (e.g. post-use separation). In this study, a metal-free N-doped reduced graphene oxide (N-rGO) catalyst was prepared via a facile hydrothermal method. N-rGO filters were then synthesized by facile vacuum filtration, such that water can flow through nanochannels within the filters. Various advanced characterization techniques were employed to obtain structural and compositional information of the as-synthesized N-rGO filters. An optimized phenol oxidative flux of 0.036 +_ 0.002 mmol.h ~ was obtained by metal-flee catalytic activation of persulfate at an influent persulfate concentration of 1.0 mmol-L 1 and filter weight of 15 rag, while a N-free rGO filter demonstrated negligible phenol oxidation capability under similar conditions. Compared to a conventional batch system, the flow-through design demonstrates obviously enhanced oxidation kinetics (0.036 vs. 0.010 retool-h-I), mainly due to the liquid flow through the filter leading to convection-enhanced transfer of the target molecule to the filter active sites. Overall, the results exemplified the advantages of organic compound removal by catalytic activation of persulfate using a metal-free catalyst in flow- through mode, and demonstrated the potential of N-rGO filters for practical environmental applications. 展开更多
关键词 persulfate activation nitrogen-doped graphene phenol oxidation convective flow batch system
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部