In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in t...In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in ten rice genotypes were investgated at the elongation, booting, heading and maturity stages under six N levels in a pot experiment with soil-sand mixtures at various ratios. NAE in various rice genotypes firstly increased, peaked under a medium nitrogen rate of 0.177 g/kg and then decreased, but NUE and NHI always decreased with increasing nitrogen levels. NAE in various rice genotypes ever increased with growing process and NUE indicated a descending tendency of elongation stage〉heading stage〉maturity stage〉booting stage. N level influenced rice NAE, NUE and NHI most, followed by genotype, and the both effects were significant at 0.01 level. In addition, the interaction effects of genotype and nitrogen level on rice NAE and NUE were significant at 0.01 level, but not significant on rice NHI. Because the maximum differences of NAE and NUE were found at the elongation stage, it was thought to be the most suitable stage for identification and screening these two paremeters. Therefore, the optimum conditions for identification and screening of rice NAE, NUE and NHI in a pot experiment were the nitrogen rate of 0.157 g/kg at the elongation stage, low nitrogen at the elongation stage, and the nitrogen rate of 0.277 g/kg at the maturity stage, respectively.展开更多
There are significant differences in nitrogen absorption and utilization effi- ciency among different maize varieties. So it is very essential to determine nitrogen efficiencies of different maize varieties. The effec...There are significant differences in nitrogen absorption and utilization effi- ciency among different maize varieties. So it is very essential to determine nitrogen efficiencies of different maize varieties. The effect of nitrogen application on maize growth can be reflected at the grain filling stage. Many scholars have researched the differences in grain filling characteristics among different maize varieties under the same nitrogen application conditions, but there are reare reports on the differ- ences under different nitrogen application conditions. In this study, the grain filling dynamics of maize were observed so as to determine the differences in nitrogen efficiency and to further compare the differences in grain filling characteristics a- mong different maize varieties. The test was carried out with Tunyu 99, Luyu 19 and Xianyu 335 as the materials during May 1st to October 7th, 2013. Under the nitrogen application levels of NO (0 kg/hm2 of pure nitrogen), N1 (140 kg/hm2 of pure nitrogen) and N2 (210 kg/hm2 of pure nitrogen), the filling dynamics of upper- and middle- lower-part grains of spring maize were studied. The results showed that among the three nitrogen application level, the grain fresh weight and dry weight of Tunyu 99 ranked as N2〉NI〉N0; the grain fresh weight and dry weight of Luyu 19 ranked as N1〉N2〉N0; the grain fresh weight and dry weight of Xianyu 335 ranked as (N1, N2)〉N0, and there was no significant difference between N1 and N2. Un- der the nitrogen application level of N1, Luyu 19 showed the best growth; under the nitrogen application level of N2, Tunyu 99 showed the best growth, The growth ad- vantage of Xianyu 335 was unobvious under neither N1 nor N2 nitrogen application levels. The development-promoting effect of nitrogen application was more obvious in upper-part grains than that in middle-lower-part grains.展开更多
Background:Protein releases amino acids faster than starch releases glucose in digestive tract of pigs fed lowprotein(LP)diets.Poor synchronization of dietary glucose and amino acids supply leads to compromised nitrog...Background:Protein releases amino acids faster than starch releases glucose in digestive tract of pigs fed lowprotein(LP)diets.Poor synchronization of dietary glucose and amino acids supply leads to compromised nitrogen efficiency.Dietary starch patterns modulation may improve this situation.Methods:Growing barrows(29.7±2.0 kg)were randomly allotted into 5 dietary treatments with LP diets consisting of different purified starches.Treatments included:waxy corn starch(W LP),corn starch+waxy corn starch(C+W LP),corn starch(C LP),pea starch+waxy corn starch(P+W LP)and pea starch(P LP).In the experiment,growth performance,protein deposition,nutrient metabolism,and fecal microbial community of pigs were investigated.In vitro starch digestion was used for predicting the in vivo glucose response.Results:Dietary starch in vitro glucose release profile was determined by starch source and the ratio of amylopectin and amylose.C+W LP treatment showed decreased total nitrogen excretion and plasma citrulline concentration and improved plasma leptin concentration among treatments(P<0.05).Besides,the highest nitrogen apparent biological value,whole-body protein deposition and growth performance and lowest urinary nitrogen excretion were also observed in C+W LP treatment.Compared with the other groups,C+W LP and C LP showed increased plasma pyruvate,IGF-1,and lipase concentrations(P<0.05).The W LP group presented dramatically increased plasma alanine and urea nitrogen concentration and decreased aldolase and leptin concentrations(P<0.05).Dietary starch patterns did not make an impact on bacterial richness and diversity,but changed the taxonomic and functional structures of the microbial communities.Microbial protein fermentation product(isobutyrate and isovalerate)presented increased in P LP treatments compared with the other treatments(P<0.05).Conclusions:Dietary starch patterns modulation can regulate dietary glucose release profile,nutrient metabolism,protein turnover,and fecal microbial fermentation in pigs.The optimal dietary glucose release profile effectively strengthened whole-body protein deposition and improve nitrogen efficiency and growth performance in growing pigs fed LP diets.展开更多
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ...Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.展开更多
Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of...Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.展开更多
Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitr...Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas.展开更多
Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season...Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.展开更多
Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical...Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.展开更多
Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key...Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key genes involved in different nodes of N pathways to boost nitrate and ammonium uptake and assimilation,and to strengthen amino acid utilization to increase grain yield and nitrogen use efficiency(NUE)in rice.The combinations OsNPF8.9a×OsNR2,OsAMT1;2×OsGS1;2×OsAS1,and OsGS2×OsAS2×OsANT3 optimized nitrate assimilation,ammonium conversion,and N reutilization,respectively.In co-overexpressing rice lines obtained by co-transformation,the tiller number,biomass,and grain yield per plant of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of wild-type ZH11,the OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line,and the OsGS2×OsAS2×OsANT3-overexpressing line.The glutamine synthase activity,free amino acids,and nitrogen utilization efficiency(NUt E)of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of ZH11 and other lines that combined key genes.N influx efficiency was increased in the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line and OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line under a low ammonium and a low nitrate treatment,respectively.We propose that combining overexpression of OsAMT1;2,OsGS1;2,and OsAS1 is a promising breeding strategy for systematically increasing rice grain yield and NUE by focusing on key nodes in the N pathway.展开更多
Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of ...Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes.展开更多
Background Nitrate leaching to groundwater and surface water and ammonia volatilization from dairy farms have negative impacts on the environment.Meanwhile,the increasing demand for dairy products will result in more ...Background Nitrate leaching to groundwater and surface water and ammonia volatilization from dairy farms have negative impacts on the environment.Meanwhile,the increasing demand for dairy products will result in more pollution if N losses are not controlled.Therefore,a more efficient,and environmentally friendly production system is needed,in which nitrogen use efficiency(NUE)of dairy cows plays a key role.To genetically improve NUE,extensively recorded and cost-effective proxies are essential,which can be obtained by including mid-infrared(MIR)spectra of milk in prediction models for NUE.This study aimed to develop and validate the best prediction model of NUE,nitrogen loss(NL)and dry matter intake(DMI)for individual dairy cows in China.Results A total of 86 lactating Chinese Holstein cows were used in this study.After data editing,704 records were obtained for calibration and validation.Six prediction models with three different machine learning algorithms and three kinds of pre-processed MIR spectra were developed for each trait.Results showed that the coefficient of determination(R2)of the best model in within-herd validation was 0.66 for NUE,0.58 for NL and 0.63 for DMI.For external validation,reasonable prediction results were only observed for NUE,with R2 ranging from 0.58 to 0.63,while the R2 of the other two traits was below 0.50.The infrared waves from 973.54 to 988.46 cm−1 and daily milk yield were the most important variables for prediction.Conclusion The results showed that individual NUE can be predicted with a moderate accuracy in both within-herd and external validations.The model of NUE could be used for the datasets that are similar to the calibration dataset.The prediction models for NL and 3-day moving average of DMI(DMI_a)generated lower accuracies in within-herd validation.Results also indicated that information of MIR spectra variables increased the predictive ability of models.Additionally,pre-processed MIR spectra do not result in higher accuracy than original MIR spectra in the external validation.These models will be applied to large-scale data to further investigate the genetic architecture of N efficiency and further reduce the adverse impacts on the environment after more data is collected.展开更多
Nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+))are two main inorganic nitrogen(N)sources during crop growth.Here,we enhanced the expression of OsAMT1.1,which encodes a NH_(4)^(+)transporter,using the NO_(3)^(-)-inducible ...Nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+))are two main inorganic nitrogen(N)sources during crop growth.Here,we enhanced the expression of OsAMT1.1,which encodes a NH_(4)^(+)transporter,using the NO_(3)^(-)-inducible promoter of OsNAR2.1 and an ubiquitin promoter in transgenic rice plants.Under field condition of 120 kg/hm2 N,agronomic N use efficiency,N recovery efficiency and N transport efficiency,and grain yield of the pOsNAR2.1:OsAMT1.1 transgenic lines were increased compared with those of the wild type(WT)and the pUbi:OsAMT1.1 transgenic plants.Under 2.0 mmol/L NO_(3)^(-)+0.5 mmol/L NH_(4)^(+)and 0.5 mmol/L NO_(3)^(-)+2.0 mmol/L NH_(4)^(+)conditions of hydroponic culture,compared with the WT,both biomass and total N content were increased in the pOsNAR2.1:OsAMT1.1 transgenic lines.However,biomass was significantly reduced in pUbi:OsAMT1.1 transgenic plants under 0.5 mmol/L NO_(3)^(-)+2.0 mmol/L NH_(4)^(+)condition.The lines expressing pOsNAR2.1:OsAMT1.1 exhibited increased OsAMT1.1 expression and 15NH_(4)^(+)influx in roots under both 2.0 mmol/L NO_(3)^(-)+0.5 mmol/L NH_(4)^(+)and 0.5 mmol/L NO_(3)^(-)+2.0 mmol/L NH_(4)^(+)conditions.Our study showed that expression of OsAMT1.1 can be promoted when driven by the OsNAR2.1 promoter,especially under high-level nitrate condition,leading to enhancement of NH_(4)^(+)uptake,N use efficiency and grain yield.展开更多
The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ...The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.展开更多
[Objective]The aim was to study heterosis of N use efficiency for grain production (NUEg) of Brassica napus L. and provide theoretical basis for breeding N-efficient cultivars. [Method]Dry matter production and N co...[Objective]The aim was to study heterosis of N use efficiency for grain production (NUEg) of Brassica napus L. and provide theoretical basis for breeding N-efficient cultivars. [Method]Dry matter production and N content of six B.napus parents (Zheshuang 3,Yangyou 7,ZJ1,Shilijia,Ningyou 14 and Huyou 16) and their F1 combinations from 6 × 6 complete diallel cross in maturity stage under two N levels were measured; heterosis of NUEg,combining ability and heritability size were analyzed and calculated. [Result]The results showed that NUEg has obvious heterosis; combining ability variance analysis indicated that NUEg was mainly controlled by additive,dominant and cytoplasmic effects; genetic variance analysis showed that additive effects and dominance effects were all significant in low nitrogen fertilizer and dominance effects were significant in high nitrogen fertilizer. [Conclusion]NUEg of B.napus has obvious heterosis.展开更多
[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and ut...[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation.展开更多
The field experiments were conducted in Anhui during 2016 to investigate the effects of controlled-release nitrogen (CRN) rates and mixture of controlled-re- lease nitrogen and conventional nitrogen (CN) on the yi...The field experiments were conducted in Anhui during 2016 to investigate the effects of controlled-release nitrogen (CRN) rates and mixture of controlled-re- lease nitrogen and conventional nitrogen (CN) on the yield and nitrogen efficiency of summer maize. Six treatments included CK (with no application of N), CNIO0% splits (CN), CRFIO0% (CRN1), CRN60%+CN40% (CRN2), CRN85% (CRN3) and CRN70% (CRN4). The results showed proper CRN increased yields and output val- ue. Compared with CN, CRN2 significantly increased by 13.74%, CRN1 increased by 4.84%, and CRN3 was equal to CN. CRN increased yield by grain number per spike of yield components. CRN2 had the highest apparent nitrogen fertilizer recov- ery efficiency and CRN1 was the second, which were significantly higher than CN. Nitrogen agronomic efficiency of CRN2 was significantly higher than CN. Nitrogen physiological efficiency of CRN2 was higher than CN. The partial productivity of CRN1 was higher than that with CN. And the effect of nitrogen fertilizer of CRN2 was the highest, which was increased 758 yuan/hm2. Considering yield, nitrogen use efficiency and economic benefit, applying the mixture of CRN and CN was the most beneficial treatment. CRN1 was the second treatment, and CRN3 didn't reduce yield.展开更多
[Objective] This study and nitrogen use efficiency in aimed to investigate the nitrogen dynamic changes maize under different nitrogen application patterns. [Method] Maize cultivar Xianyu 335 was selected as the expe...[Objective] This study and nitrogen use efficiency in aimed to investigate the nitrogen dynamic changes maize under different nitrogen application patterns. [Method] Maize cultivar Xianyu 335 was selected as the experimental material and was planted at two densities 85 000 and 95 000 plants/hm2. The total amount of fertilizers applied kept constant. The nitrogen content in leaves, stems, sheathes, husks, grains, cobs, tassels and filaments of maize plants in jointing stage, silking stage, 15, 30, 45 and 60 d after silking stage was measured. [Result] Total nitrogen content in maize plant reached the peak around 45 d after silking stage and a higher population was helpful to nitrogen accumulation. Total nitrogen content of maize plant was positively correlated with yield and it got closer in higher popula- tion. Grain nitrogen content and nitrogen harvest index were significantly positively correlated with yield in higher population. High ratio of nitrogen fertilizer in silking stage was beneficial to nitrogen accumulation in leaf and ear, as well as nitrogen translocation in stem and sheath, but high ratio of nitrogen fertilizer in earlier stage delayed nitrogen metabolism. Nitrogen uptake peak was from silking stage to 15 d after silking stage, and nitrogen uptake rate increased high ratio of nitrogen fertilizer was applied in later growth stages and moved forward in higher plant population. [Conclusion] It was advantaged for nitrogen fertilizer efficiency on condition that ni- trogen application was moved backward. Accumulating too much nitrogen in earlier stages inhibited nitrogen uptake in later periods展开更多
ln order to explore the effect of broadcast application of urea (BR-U) and surface concentrated-fertilization on grain yield and nitrogen agronomy efficiency of two-line super hybrid rice, this experiment was conduc...ln order to explore the effect of broadcast application of urea (BR-U) and surface concentrated-fertilization on grain yield and nitrogen agronomy efficiency of two-line super hybrid rice, this experiment was conducted with super hybrid rice Y-Liangyou 1 and Liangyou 0293 to determine til ering dynamics, SPAD, LAl and dry matter accumulation. lts total N application was 180 kg/hm2 and different application rate and topdressing methods were set respectively. The results showed that grain yield and nitrogen agronomy efficiency were significantly improved with the T3 and T4 nitrogenous fertilizer application model. The improving of grain yield and nitrogen agronomy efficiency was benefited from rational postponing N application. However, neither single application of base fertilizer (T2) nor single application of topdressing fertilizer (T5 and T6) can coordinate the relationship between source and sink. Both grain yield and nitrogen agronomy efficiency were insignificantly under the broadcast application of urea and surface concentrated fertilization.展开更多
In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and...In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and intersubspecific heterosis. Significant progress has been made in the last two decades, with a large number of super rice varieties being approved by the MOA and the national average grain yield being increased from 6.21 t ha^-1 in 1996 to 6.89 t ha^-1 in 2015. The increase in yield potential of super rice was mainly due to the larger sink size which resulted from larger panicles. Moreover, higher photosynthetic capacity and improved root physiological traits before heading contributed to the increase in sink size. However, the poor grain filling of the later-flowering inferior spikelets and the quickly decreased root activity of super rice during grain filling period restrict the achievement of high yield potential of super rice. Furthermore, it is widely accepted that the high yield potential of super rice requires a large amount of N fertilizer input, which has resulted in an increase in N consumption and a decrease in nitrogen use efficiency (NUE), although it remains unclear whether super rice per se is responsible for the latter. In the present paper, we review the history and success of China's Super Rice Breeding Pro- gram, summarize the advances in agronomic and physiological mechanisms underlying the high yield potential of super rice, and examine NUE differences between super rice and ordinary rice varieties. We also provide a brief introduction to the Green Super Rice Project, which aims to diversify breeding targets beyond yield improvement alone to address global concerns around resource use and environmental change. It is hoped that this review will facilitate further improvement of rice production into the future.展开更多
In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enh...In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China. To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS). Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha-1), and CN (conventional N application: 330 kg N ha-1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated. At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant-1 and 0.14 mL h-1 plant-1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively. The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3. The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha-1, 28.5%, and 5.7 kg grain kg-1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively. The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively. Those results suggested that LN with distances of 15-30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping. Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield.展开更多
基金supported by the National High-Tech Research&Development program(Grant No.2003AA206030)the National Natural Science Foundation of China(Grant No.30030090)
文摘In order to establish methods for indentification and screening of rice genotypes with high nitrogen (N) efficiency, N absorption efficiency (NAE), N utilization efficiency (NUE) and N harvest index (NHI) in ten rice genotypes were investgated at the elongation, booting, heading and maturity stages under six N levels in a pot experiment with soil-sand mixtures at various ratios. NAE in various rice genotypes firstly increased, peaked under a medium nitrogen rate of 0.177 g/kg and then decreased, but NUE and NHI always decreased with increasing nitrogen levels. NAE in various rice genotypes ever increased with growing process and NUE indicated a descending tendency of elongation stage〉heading stage〉maturity stage〉booting stage. N level influenced rice NAE, NUE and NHI most, followed by genotype, and the both effects were significant at 0.01 level. In addition, the interaction effects of genotype and nitrogen level on rice NAE and NUE were significant at 0.01 level, but not significant on rice NHI. Because the maximum differences of NAE and NUE were found at the elongation stage, it was thought to be the most suitable stage for identification and screening these two paremeters. Therefore, the optimum conditions for identification and screening of rice NAE, NUE and NHI in a pot experiment were the nitrogen rate of 0.157 g/kg at the elongation stage, low nitrogen at the elongation stage, and the nitrogen rate of 0.277 g/kg at the maturity stage, respectively.
基金Supported by National Natural Science Foundation of China(31271645)Agricultural Science and Technology Project of Shanxi Province(20140311007-4)~~
文摘There are significant differences in nitrogen absorption and utilization effi- ciency among different maize varieties. So it is very essential to determine nitrogen efficiencies of different maize varieties. The effect of nitrogen application on maize growth can be reflected at the grain filling stage. Many scholars have researched the differences in grain filling characteristics among different maize varieties under the same nitrogen application conditions, but there are reare reports on the differ- ences under different nitrogen application conditions. In this study, the grain filling dynamics of maize were observed so as to determine the differences in nitrogen efficiency and to further compare the differences in grain filling characteristics a- mong different maize varieties. The test was carried out with Tunyu 99, Luyu 19 and Xianyu 335 as the materials during May 1st to October 7th, 2013. Under the nitrogen application levels of NO (0 kg/hm2 of pure nitrogen), N1 (140 kg/hm2 of pure nitrogen) and N2 (210 kg/hm2 of pure nitrogen), the filling dynamics of upper- and middle- lower-part grains of spring maize were studied. The results showed that among the three nitrogen application level, the grain fresh weight and dry weight of Tunyu 99 ranked as N2〉NI〉N0; the grain fresh weight and dry weight of Luyu 19 ranked as N1〉N2〉N0; the grain fresh weight and dry weight of Xianyu 335 ranked as (N1, N2)〉N0, and there was no significant difference between N1 and N2. Un- der the nitrogen application level of N1, Luyu 19 showed the best growth; under the nitrogen application level of N2, Tunyu 99 showed the best growth, The growth ad- vantage of Xianyu 335 was unobvious under neither N1 nor N2 nitrogen application levels. The development-promoting effect of nitrogen application was more obvious in upper-part grains than that in middle-lower-part grains.
基金financially supported by the Beijing Swine Innovation Team of Modern Agriculture Industry Technological System.
文摘Background:Protein releases amino acids faster than starch releases glucose in digestive tract of pigs fed lowprotein(LP)diets.Poor synchronization of dietary glucose and amino acids supply leads to compromised nitrogen efficiency.Dietary starch patterns modulation may improve this situation.Methods:Growing barrows(29.7±2.0 kg)were randomly allotted into 5 dietary treatments with LP diets consisting of different purified starches.Treatments included:waxy corn starch(W LP),corn starch+waxy corn starch(C+W LP),corn starch(C LP),pea starch+waxy corn starch(P+W LP)and pea starch(P LP).In the experiment,growth performance,protein deposition,nutrient metabolism,and fecal microbial community of pigs were investigated.In vitro starch digestion was used for predicting the in vivo glucose response.Results:Dietary starch in vitro glucose release profile was determined by starch source and the ratio of amylopectin and amylose.C+W LP treatment showed decreased total nitrogen excretion and plasma citrulline concentration and improved plasma leptin concentration among treatments(P<0.05).Besides,the highest nitrogen apparent biological value,whole-body protein deposition and growth performance and lowest urinary nitrogen excretion were also observed in C+W LP treatment.Compared with the other groups,C+W LP and C LP showed increased plasma pyruvate,IGF-1,and lipase concentrations(P<0.05).The W LP group presented dramatically increased plasma alanine and urea nitrogen concentration and decreased aldolase and leptin concentrations(P<0.05).Dietary starch patterns did not make an impact on bacterial richness and diversity,but changed the taxonomic and functional structures of the microbial communities.Microbial protein fermentation product(isobutyrate and isovalerate)presented increased in P LP treatments compared with the other treatments(P<0.05).Conclusions:Dietary starch patterns modulation can regulate dietary glucose release profile,nutrient metabolism,protein turnover,and fecal microbial fermentation in pigs.The optimal dietary glucose release profile effectively strengthened whole-body protein deposition and improve nitrogen efficiency and growth performance in growing pigs fed LP diets.
基金supported by the the Guizhou Provincial Excellent Young Talents Project of Science and Technology,China(YQK(2023)002)the Guizhou Provincial Science and Technology Projects,China((2022)Key 008)+2 种基金the Guizhou Provincial Science and Technology Support Plan,China((2022)Key 026)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China((2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China((2023)007)。
文摘Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.
基金supported by the Key R&D Plan of Hubei Province,China(2022BBA002)the Carbon Account Accounting and Carbon Reduction and Sequestration Technology Research of Quzhou City of China(2022-31).
文摘Controlled-release urea(CRU)is commonly used to improve the crop yield and nitrogen use efficiency(NUE).However,few studies have investigated the effects of CRU in the ratoon rice system.Ratoon rice is the practice of obtaining a second harvest from tillers originating from the stubble of the previously harvested main crop.In this study,a 2-year field experiment using a randomized complete block design was conducted to determine the effects of CRU on the yield,NUE,and economic benefits of ratoon rice,including the main crop,to provide a theoretical basis for fertilization of ratoon rice.The experiment included four treatments:(i)no N fertilizer(CK);(ii)traditional practice with 5 applications of urea applied at different crop growth stages by surface broadcasting(FFP);(iii)one-time basal application of CRU(BF1);and(iv)one-time basal application of CRU combined with common urea(BF2).The BF1 and BF2 treatments significantly increased the main crop yield by 17.47 and 15.99%in 2019,and by 17.91 and 16.44%in 2020,respectively,compared with FFP treatment.The BF2 treatment achieved similar yield of the ratoon crop to the FFP treatment,whereas the BF1 treatment significantly increased the yield of the ratoon crop by 14.81%in 2019 and 12.21%in 2020 compared with the FFP treatment.The BF1 and BF2 treatments significantly improved the 2-year apparent N recovery efficiency,agronomic NUE,and partial factor productivity of applied N by 11.47-16.66,27.31-44.49,and 9.23-15.60%,respectively,compared with FFP treatment.The BF1 and BF2 treatments reduced the chalky rice rate and chalkiness of main and ratoon crops relative to the FFP treatment.Furthermore,emergy analysis showed that the production efficiency of the BF treatments was higher than that of the FFP treatment.The BF treatments reduced labor input due to reduced fertilization times and improved the economic benefits of ratoon rice.Compared with the FFP treatment,the BF1 and BF2 treatments increased the net income by 14.21-16.87 and 23.76-25.96%,respectively.Overall,the one-time blending use of CRU and common urea should be encouraged to achieve high yield,high nitrogen use efficiency,and good quality of ratoon rice,which has low labor input and low apparent N loss.
基金funded by the National Natural Science Foundation of China(51969003)the Key Research and Development Project of Gansu Province(22YF7NA110)+4 种基金the Discipline Team Construction Project of Gansu Agricultural Universitythe Gansu Agricultural University Youth Mentor Support Fund Project(GAU-QDFC-2022-22)the Innovation Fund Project of Higher Education in Gansu Province(2022B-101)the Research Team Construction Project of College of Water Conservancy and Hydropower Engineering,Gansu Agricultural University(Gaucwky-01)the Gansu Water Science Experimental Research and Technology Extension Program(22GSLK023)。
文摘Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas.
基金supported by the National Natural Science Foundation of China(31971845 and 32101819)the earmarked fund for China Agriculture Research System(CARS-01-20)the China Postdoctoral Science Foundation(2021M691179)。
文摘Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.
基金supported by the National Natural Science Foundation of China (41671301)the National Key Research and Development Program of China (2016YFD0300901)the Central Public-interest Scientific Institution Basal Research Fund, China (GY2022-13-5, G2022-02-2, G2022-02-3 and G2022-02-10)
文摘Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.
基金supported by the National Natural Science Foundation of China(32260498)the Guizhou Provincial Science and Technology Project(qiankehejichu-ZK(2022)Key 008)+2 种基金the Wuhan Science and Technology Project(2020020601012259)the Guizhou Provincial Science and Technology Support Plan(qiankehezhicheng(2022)Key 026)the Key Cultivation Project of Guizhou University(201903)。
文摘Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key genes involved in different nodes of N pathways to boost nitrate and ammonium uptake and assimilation,and to strengthen amino acid utilization to increase grain yield and nitrogen use efficiency(NUE)in rice.The combinations OsNPF8.9a×OsNR2,OsAMT1;2×OsGS1;2×OsAS1,and OsGS2×OsAS2×OsANT3 optimized nitrate assimilation,ammonium conversion,and N reutilization,respectively.In co-overexpressing rice lines obtained by co-transformation,the tiller number,biomass,and grain yield per plant of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of wild-type ZH11,the OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line,and the OsGS2×OsAS2×OsANT3-overexpressing line.The glutamine synthase activity,free amino acids,and nitrogen utilization efficiency(NUt E)of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of ZH11 and other lines that combined key genes.N influx efficiency was increased in the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line and OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line under a low ammonium and a low nitrate treatment,respectively.We propose that combining overexpression of OsAMT1;2,OsGS1;2,and OsAS1 is a promising breeding strategy for systematically increasing rice grain yield and NUE by focusing on key nodes in the N pathway.
基金grateful for grants from the National Natural Science Foundation of China(32071943)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD-2020-01)+1 种基金the Postgraduate Research and Innovation Program of Jiangsu Province,China(XKYCX17_052)the Top Talent Supporting Program of Yangzhou University,China(2015-01).
文摘Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes.
基金supported by the earmarked fund for China Agriculture Research System (CARS-36)the Key Research Project of Henan Province (221111111100)+3 种基金the Key Research Project of Ningxia Hui Autonomous Region (2022BBF02017)the Program for Changjiang Scholar and Innovation Research Team in University (IRT_15R62)China Scholarship Council (No.201913043)Hainan University.
文摘Background Nitrate leaching to groundwater and surface water and ammonia volatilization from dairy farms have negative impacts on the environment.Meanwhile,the increasing demand for dairy products will result in more pollution if N losses are not controlled.Therefore,a more efficient,and environmentally friendly production system is needed,in which nitrogen use efficiency(NUE)of dairy cows plays a key role.To genetically improve NUE,extensively recorded and cost-effective proxies are essential,which can be obtained by including mid-infrared(MIR)spectra of milk in prediction models for NUE.This study aimed to develop and validate the best prediction model of NUE,nitrogen loss(NL)and dry matter intake(DMI)for individual dairy cows in China.Results A total of 86 lactating Chinese Holstein cows were used in this study.After data editing,704 records were obtained for calibration and validation.Six prediction models with three different machine learning algorithms and three kinds of pre-processed MIR spectra were developed for each trait.Results showed that the coefficient of determination(R2)of the best model in within-herd validation was 0.66 for NUE,0.58 for NL and 0.63 for DMI.For external validation,reasonable prediction results were only observed for NUE,with R2 ranging from 0.58 to 0.63,while the R2 of the other two traits was below 0.50.The infrared waves from 973.54 to 988.46 cm−1 and daily milk yield were the most important variables for prediction.Conclusion The results showed that individual NUE can be predicted with a moderate accuracy in both within-herd and external validations.The model of NUE could be used for the datasets that are similar to the calibration dataset.The prediction models for NL and 3-day moving average of DMI(DMI_a)generated lower accuracies in within-herd validation.Results also indicated that information of MIR spectra variables increased the predictive ability of models.Additionally,pre-processed MIR spectra do not result in higher accuracy than original MIR spectra in the external validation.These models will be applied to large-scale data to further investigate the genetic architecture of N efficiency and further reduce the adverse impacts on the environment after more data is collected.
基金financially supported by the National Natural Science Foundation of China(Grant No.32061143039)Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022A1515012381)+1 种基金Shenzhen Science and Technology Program,China(Grant No.JCYJ20210324124409027)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University,China.
文摘Nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+))are two main inorganic nitrogen(N)sources during crop growth.Here,we enhanced the expression of OsAMT1.1,which encodes a NH_(4)^(+)transporter,using the NO_(3)^(-)-inducible promoter of OsNAR2.1 and an ubiquitin promoter in transgenic rice plants.Under field condition of 120 kg/hm2 N,agronomic N use efficiency,N recovery efficiency and N transport efficiency,and grain yield of the pOsNAR2.1:OsAMT1.1 transgenic lines were increased compared with those of the wild type(WT)and the pUbi:OsAMT1.1 transgenic plants.Under 2.0 mmol/L NO_(3)^(-)+0.5 mmol/L NH_(4)^(+)and 0.5 mmol/L NO_(3)^(-)+2.0 mmol/L NH_(4)^(+)conditions of hydroponic culture,compared with the WT,both biomass and total N content were increased in the pOsNAR2.1:OsAMT1.1 transgenic lines.However,biomass was significantly reduced in pUbi:OsAMT1.1 transgenic plants under 0.5 mmol/L NO_(3)^(-)+2.0 mmol/L NH_(4)^(+)condition.The lines expressing pOsNAR2.1:OsAMT1.1 exhibited increased OsAMT1.1 expression and 15NH_(4)^(+)influx in roots under both 2.0 mmol/L NO_(3)^(-)+0.5 mmol/L NH_(4)^(+)and 0.5 mmol/L NO_(3)^(-)+2.0 mmol/L NH_(4)^(+)conditions.Our study showed that expression of OsAMT1.1 can be promoted when driven by the OsNAR2.1 promoter,especially under high-level nitrate condition,leading to enhancement of NH_(4)^(+)uptake,N use efficiency and grain yield.
基金support of the National Key R&D Program of China(2023YFD2301500)the China Agriculture System of MOF and MARA(CARS-02)the Shandong Central Guiding the Local Science and Technology Development,China(YDZX20203700002548)。
文摘The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.
基金Supported by Agricultural Science &Technology Project of Jiangsu Province(BE2008369)~~
文摘[Objective]The aim was to study heterosis of N use efficiency for grain production (NUEg) of Brassica napus L. and provide theoretical basis for breeding N-efficient cultivars. [Method]Dry matter production and N content of six B.napus parents (Zheshuang 3,Yangyou 7,ZJ1,Shilijia,Ningyou 14 and Huyou 16) and their F1 combinations from 6 × 6 complete diallel cross in maturity stage under two N levels were measured; heterosis of NUEg,combining ability and heritability size were analyzed and calculated. [Result]The results showed that NUEg has obvious heterosis; combining ability variance analysis indicated that NUEg was mainly controlled by additive,dominant and cytoplasmic effects; genetic variance analysis showed that additive effects and dominance effects were all significant in low nitrogen fertilizer and dominance effects were significant in high nitrogen fertilizer. [Conclusion]NUEg of B.napus has obvious heterosis.
基金Supported by Construction of Southwestern Rice Innovation System,Science and Technology Project on Food Production (2006BAD02-A05)Agriculture Science Technology Achievement TransformationFund (2006GB2F000256)+2 种基金Sichuan Provincial Foundation for Lead-ers of Disciplines in ScienceProject of Rice Breeding Technology ofSichuanProgram Promoted by Sichuan Financial Administration~~
文摘[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation.
基金Supported by National Science and Technology Major Project(2015ZX07204-007)Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province(1606c08231)Special Fund for Agro-scientific Research in the Public Interest(201503122)~~
文摘The field experiments were conducted in Anhui during 2016 to investigate the effects of controlled-release nitrogen (CRN) rates and mixture of controlled-re- lease nitrogen and conventional nitrogen (CN) on the yield and nitrogen efficiency of summer maize. Six treatments included CK (with no application of N), CNIO0% splits (CN), CRFIO0% (CRN1), CRN60%+CN40% (CRN2), CRN85% (CRN3) and CRN70% (CRN4). The results showed proper CRN increased yields and output val- ue. Compared with CN, CRN2 significantly increased by 13.74%, CRN1 increased by 4.84%, and CRN3 was equal to CN. CRN increased yield by grain number per spike of yield components. CRN2 had the highest apparent nitrogen fertilizer recov- ery efficiency and CRN1 was the second, which were significantly higher than CN. Nitrogen agronomic efficiency of CRN2 was significantly higher than CN. Nitrogen physiological efficiency of CRN2 was higher than CN. The partial productivity of CRN1 was higher than that with CN. And the effect of nitrogen fertilizer of CRN2 was the highest, which was increased 758 yuan/hm2. Considering yield, nitrogen use efficiency and economic benefit, applying the mixture of CRN and CN was the most beneficial treatment. CRN1 was the second treatment, and CRN3 didn't reduce yield.
基金Supported by National High Technology Research and Development Program of China(863 Program,2011AA100504)National Science and Technology Plan Project(2012BAD04B02)+1 种基金a Grant from the Department of Science and Technology of Jilin Province(20116031)Special Fund for Agro-scientific Research in the Public Interest(201303125)~~
文摘[Objective] This study and nitrogen use efficiency in aimed to investigate the nitrogen dynamic changes maize under different nitrogen application patterns. [Method] Maize cultivar Xianyu 335 was selected as the experimental material and was planted at two densities 85 000 and 95 000 plants/hm2. The total amount of fertilizers applied kept constant. The nitrogen content in leaves, stems, sheathes, husks, grains, cobs, tassels and filaments of maize plants in jointing stage, silking stage, 15, 30, 45 and 60 d after silking stage was measured. [Result] Total nitrogen content in maize plant reached the peak around 45 d after silking stage and a higher population was helpful to nitrogen accumulation. Total nitrogen content of maize plant was positively correlated with yield and it got closer in higher popula- tion. Grain nitrogen content and nitrogen harvest index were significantly positively correlated with yield in higher population. High ratio of nitrogen fertilizer in silking stage was beneficial to nitrogen accumulation in leaf and ear, as well as nitrogen translocation in stem and sheath, but high ratio of nitrogen fertilizer in earlier stage delayed nitrogen metabolism. Nitrogen uptake peak was from silking stage to 15 d after silking stage, and nitrogen uptake rate increased high ratio of nitrogen fertilizer was applied in later growth stages and moved forward in higher plant population. [Conclusion] It was advantaged for nitrogen fertilizer efficiency on condition that ni- trogen application was moved backward. Accumulating too much nitrogen in earlier stages inhibited nitrogen uptake in later periods
基金Supported by Nation Key technology R&D Program(2012BAD07B02)National Innovation Experiment Program for University Students(104892013032)Hubei Provincial Key Discipline of Crop Science in Yangtze University~~
文摘ln order to explore the effect of broadcast application of urea (BR-U) and surface concentrated-fertilization on grain yield and nitrogen agronomy efficiency of two-line super hybrid rice, this experiment was conducted with super hybrid rice Y-Liangyou 1 and Liangyou 0293 to determine til ering dynamics, SPAD, LAl and dry matter accumulation. lts total N application was 180 kg/hm2 and different application rate and topdressing methods were set respectively. The results showed that grain yield and nitrogen agronomy efficiency were significantly improved with the T3 and T4 nitrogenous fertilizer application model. The improving of grain yield and nitrogen agronomy efficiency was benefited from rational postponing N application. However, neither single application of base fertilizer (T2) nor single application of topdressing fertilizer (T5 and T6) can coordinate the relationship between source and sink. Both grain yield and nitrogen agronomy efficiency were insignificantly under the broadcast application of urea and surface concentrated fertilization.
基金financially supported by the grants from the National High-Tech R&D Program of China(863 Program,2014AA10A605)the Fundamental Research Funds for the Central Universities,China(2015BQ002)
文摘In 1996, a mega project that aimed to develop rice varieties with super-high yield potential (super rice) was launched by the Ministry of Agriculture (MOA) in China using a combination of the ideotype approach and intersubspecific heterosis. Significant progress has been made in the last two decades, with a large number of super rice varieties being approved by the MOA and the national average grain yield being increased from 6.21 t ha^-1 in 1996 to 6.89 t ha^-1 in 2015. The increase in yield potential of super rice was mainly due to the larger sink size which resulted from larger panicles. Moreover, higher photosynthetic capacity and improved root physiological traits before heading contributed to the increase in sink size. However, the poor grain filling of the later-flowering inferior spikelets and the quickly decreased root activity of super rice during grain filling period restrict the achievement of high yield potential of super rice. Furthermore, it is widely accepted that the high yield potential of super rice requires a large amount of N fertilizer input, which has resulted in an increase in N consumption and a decrease in nitrogen use efficiency (NUE), although it remains unclear whether super rice per se is responsible for the latter. In the present paper, we review the history and success of China's Super Rice Breeding Pro- gram, summarize the advances in agronomic and physiological mechanisms underlying the high yield potential of super rice, and examine NUE differences between super rice and ordinary rice varieties. We also provide a brief introduction to the Green Super Rice Project, which aims to diversify breeding targets beyond yield improvement alone to address global concerns around resource use and environmental change. It is hoped that this review will facilitate further improvement of rice production into the future.
基金supported by the National Key Research and Development Program of China (2016YFD0300202)the National Natural Science Foundation of China (31671625, 31271669)
文摘In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China. To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS). Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha-1), and CN (conventional N application: 330 kg N ha-1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated. At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant-1 and 0.14 mL h-1 plant-1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively. The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3. The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha-1, 28.5%, and 5.7 kg grain kg-1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively. The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively. Those results suggested that LN with distances of 15-30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping. Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield.