Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this ...Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables.展开更多
In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)an...In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.展开更多
Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution...Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution to convert N2 to ammonia.However,the poor light absorption and low charge carrier separation efficiency in conventional semiconductors are bottlenecks for the application of this technology.Herein,a facile synthesis of anatase TiO_(2)nanosheets with an abundance of surface oxygen vacancies(TiO_(2)-OV)via the calcination treatment was reported.Photocatalytic experiments of the prepared anatase TiO_(2)samples showed that TiO_(2)-OV nanosheets exhibited remarkably increased ammonia yield for solar-driven N2 fixation in pure water,without adding any sacrificial agents.EPR,XPS,XRD,UV-Vis DRS,TEM,Raman,and PL techniques were employed to systematically explore the possible enhanced mechanism.Studies revealed that the introduced surface oxygen vacancies significantly extended the light absorption capability in the visible region,decreased the adsorption and activation barriers of inert N2,and improved the separation and transfer efficiency of the photogenerated electronhole pairs.Thus,a high rate of ammonia evolution in TiO_(2)-OV was realized.This work offers a promising and sustainable approach for the efficient artificial photosynthesis of ammonia.展开更多
[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixat...[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.展开更多
In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enh...In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China. To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS). Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha-1), and CN (conventional N application: 330 kg N ha-1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated. At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant-1 and 0.14 mL h-1 plant-1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively. The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3. The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha-1, 28.5%, and 5.7 kg grain kg-1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively. The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively. Those results suggested that LN with distances of 15-30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping. Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield.展开更多
Ammonia synthesis via the Haber-Bosch process, which has been heralded as the most important invention of the 20 th century, consumes massive amounts of energy, around 1%–2% of the world’s annual energy...Ammonia synthesis via the Haber-Bosch process, which has been heralded as the most important invention of the 20 th century, consumes massive amounts of energy, around 1%–2% of the world’s annual energy consumption. Developing green and sustainable strategies for NH3 synthesis under ambient conditions, using renewable energy, is strongly desired, by both industrial and sci-entific researchers. Artificial photosynthesis for ammonia synthesis, which has recently attracted significant attention, directly produces NH3 from sunlight, and N2 and H2O via photocatalysis. This has been regarded as an ideal, energy-saving and environmentally-benign process for NH3 produc-tion because it can be performed under normal temperature and atmospheric pressure using re-newable solar energy. Although sustainable developments have been achieved since the pioneering work in 1977, many challenging issues(e.g., adsorption and activation of nitrogen molecules on the surface of photocatalysts under mild conditions) have still not been well solved and the photocata-lytic activities are generally low. In this miniature review, I summarize the most recent progress of photocatalytic N2 fixation for ammonia synthesis, focusing specifically on two attractive aspects for adsorption and activation of nitrogen molecules: one is engineering of oxygen vacancies, and the other is mimicking natural nitrogenase for constructing artificial systems for N2 fixation. Several representative works focusing on these aspects in artificial systems have been reported recently, and it has been demonstrated that both factors play more significant roles in photocatalytic N2 re-duction and fixation under ambient conditions. At the end of the review, I also give some remarks and perspective on the existing challenges and future directions in this field.展开更多
To reveal the intraspecific evolution of Leptospirillum ferriphilum isolates which thrived in industrial bioleaching ecosystems and acid mine drainages,genome sequences of L.ferriphilum YSK,L.ferriphilum DX and L.ferr...To reveal the intraspecific evolution of Leptospirillum ferriphilum isolates which thrived in industrial bioleaching ecosystems and acid mine drainages,genome sequences of L.ferriphilum YSK,L.ferriphilum DX and L.ferriphilum ZJ were determined to compare with complete genome of L.ferriphilum ML-04.The genome comparisons reveal that extensive intraspecific variation occurs in their genomes,and that the loss and insertion of novel gene blocks of probable phage origin may mostly contribute to heterogeneity of gene content among L.ferriphilum genomes.Surprisingly,a nif gene cluster is identified in L.ferriphilum YSK and L.ferriphilum ZJ genomes.Intensive analysis and further experiments indicate that the nif gene cluster in L.ferriphilum YSK inherits from ancestor rather than lateral gene transfer.Overall,results suggest that the population of L.ferriphilum undergoes frequent genetic recombination,resulting in many closely related genome types in recent evolution.The combinatorial processes profoundly shape their physiologies and provide the basis for adaptation to different niches.展开更多
Reducing nitrogen to ammonia with solar energy has become a wide concern when it comes to photocatalysis research.It is considered to be one of the more promising alternate options for the conventional Haber-Bosch cyc...Reducing nitrogen to ammonia with solar energy has become a wide concern when it comes to photocatalysis research.It is considered to be one of the more promising alternate options for the conventional Haber-Bosch cycle.Herein,2D g-C_(3)N_(4)composites with modifying ultrathin sheet MnO_(2-x)were prepared and used as nitrogen fixation photocatalyst.With the assistance of the nature of MnO_(2-x),the generation rate of NH_(3)reached 225 mmol g^(-1)h^(-1),which is more than twice over the rate of pristine 2D g-C_(3)N_(4)(107 mmol g^(-1)h^(-1)).The presence of ultrathin sheet MnO_(2-x)shortens the gap of the carriers to the surface of photocatalyst.Thus the speed of electron transfer gets increased.Besides,the construction of Z-scheme heterojunction boosts the separation and migration of photogenerated carriers.As a result,the nitrogen reduction reaction(NRR)performance gets enhanced.The work may provide an example of promoting the NRR performance of non-metallic compound.展开更多
The influences of frequency on nitrogen fixation of dielectric barrier discharge in air were studied by electrical diagnostics, gas detection and infrared detection methods. The system power, nitrogen oxide concentrat...The influences of frequency on nitrogen fixation of dielectric barrier discharge in air were studied by electrical diagnostics, gas detection and infrared detection methods. The system power, nitrogen oxide concentration, voltage-current waveform, dielectric surface temperature distribution and filamentous discharge pictures were measured, and then the energy yield was calculated; paper studied their changing tendencies in the presence of frequency. Results show that frequency has strong influences on nitrogen fixation. When the parameters of reaction chamber and amplitude of applied voltage is fixed, with the increasing of frequency, the system power increases; in 5-10 kHz, nitrogen oxide gas concentration up to 1113.7 mg m-3, and 7 kHz is the optimal nitrogen fixation frequency whose energy yield is 20.5 mR (m3 W)-1.展开更多
Efficient nitrogen fixation through a reactive plasma process attracts intense interest due to the environmental issues induced by the conventional Haber–Bosch method. In this work, we present a direct and simple fix...Efficient nitrogen fixation through a reactive plasma process attracts intense interest due to the environmental issues induced by the conventional Haber–Bosch method. In this work, we present a direct and simple fixation routine without any catalysts for nitrogen in open air using an atmospheric-pressure pin-to-solution plasma electrolytic system. Nitrate, nitrite, and ammonia as the nitrogen-derived chemicals in solution were analyzed as indicators under various discharge conditions to estimate the energy efficiency of this process. The results show that the nitrogen fixation process was much more efficient by the pin-positive discharge compared to the negative one. N chemicals preferred to be formed when the solution was of negative polarity. It was also found that, with the help of solution circulation, the energy efficiency was enhanced compared to that of static liquid. However, an inverse trend was observed with the increase of the discharge current. Further study by optical emission spectroscopy indicates the important roles of active N2* and water vapour and their derived species near the plasma–water interface in the fixation process.展开更多
Plasma processing induced by discharge offers a unique way to activate nitrogen molecules. Direct nitrogen fixation into water can be realized through this approach. In this study, air or pure nitrogen gas was used as...Plasma processing induced by discharge offers a unique way to activate nitrogen molecules. Direct nitrogen fixation into water can be realized through this approach. In this study, air or pure nitrogen gas was used as the major nitrogen source bubbled into the discharge reactor. When a discharge occurred, nitrogen was dissociated to active species to take part in the aqueous chemical process. HNO3 and HNO2 were produced. The nitrogen fixation process was influenced distinctly by the presence of hydroxyl radicals. During a discharge of 21 min, HNO3 was the main product and occupied 95% of the total nitrogen content in water. Its concentration was 1.36 × 10^-3 mol/L^-1 with bubbling air and was 1.53 × 10^-3 mol L^-1 with bubbling nitrogen, while the yield was 2.32 × 10^-3 mol J^-1S^-1 and 2.06 × 10^-8 mol J^-1S^-1, respectively.展开更多
Electrocatalytic N_(2) fixation through N_(2) reduction reaction(NRR)has been regarded as a promising route for sustainable NH_(3) synthesis,while exploring high-performing NRR catalysts is pivotal yet challenging.Her...Electrocatalytic N_(2) fixation through N_(2) reduction reaction(NRR)has been regarded as a promising route for sustainable NH_(3) synthesis,while exploring high-performing NRR catalysts is pivotal yet challenging.Herein,BN quantum dots/Ti_(3)C_(2)T_(x)-MXene(BNQDs/Ti_(3)C_(2)T_(x))heterostructure is demonstrated as an efficient and durable NRR catalyst,exhibiting a high NH_(3) yield of 52.8±3.3μg h^(-1) mg^(-1) with an FE of 19.1±1.6%at0.4 V(vs.RHE),which stand at the high level among all reported BN-and MXene-based NRR catalysts.Theoretical computations reveal that the electronic interactions between BNQDs and Ti_(3)C_(2)T_(x) enrich the electron density of B atoms at the heterointerface and endow them with enhanced electron-donating capability for N_(2) activation and protonation.Meanwhile,the decorated BNQDs can block the active sites of Ti_(3)C_(2)T_(x) for hydrogen evolution,rendering a high N_(2)-to-NH_(3) selectivity.展开更多
Inoculation density has a marked effect on nodulation and N fixation in soybean (Glycine max L.). Therefore, we conducted this study to determine the optimal inoculation density of Bradyhizobium japonicum SAY3-7 (SAY3...Inoculation density has a marked effect on nodulation and N fixation in soybean (Glycine max L.). Therefore, we conducted this study to determine the optimal inoculation density of Bradyhizobium japonicum SAY3-7 (SAY3-7) and Streptomyces griseoflavus P4 (P4) for plant growth, nodulation, and N fixation, and to investigate the effect of co-inoculation on selected soybean cultivars, using the optimal inoculation density. Nitrogen fixation, in terms of an acetylene reduction activity value, was measured using a flame ionization gas chromatograph. In this study, low-density single inoculation with P4 (10<sup>5</sup> or 10<sup>6</sup> cells mL<sup>-1</sup>) was associated with the highest plant biomass, compared with normal- and high-density single inoculation with P4 (10<sup>7</sup> or 10<sup>8</sup> cells mL<sup>-1</sup>). Moreover, low-density single or co-inoculations with SAY3-7 and/or P4 produced the highest nodule biomass and highest nitrogenase activity, compared with single or dual inoculation at other inoculation densities. Therefore, we evaluated low-density co-inoculation with P4 and SAY3-7, at the rate of 10<sup>5</sup> cells mL<sup>-1</sup>, on selected soybean cultivars. Low-density co-inoculation increased the plant biomass, compared with un-inoculated plants. The effects of single and co-inoculation on nodulation did not differ significantly for any of the cultivars, except “Yezin-9” in the first experiment and “Shan Seine” in the second experiment. Low-density inoculation with both bacteria increased N fixation by 15% - 75% for seven of the cultivars in the first experiment and by 15% - 39% for three of the cultivars in the second experiment, compared with single inoculation with SAY3-7. Based on the overall results, we concluded that low-density co-inoculation with P4 and SAY3-7 gave improved plant growth and N fixation.展开更多
Biological nitrogen fixation is a very valuable alternative to nitrogen fertilizer. This process will be discussed in the “Biological Nitrogen Fixation” book. A wide array of free-living and associative nitrogen fix...Biological nitrogen fixation is a very valuable alternative to nitrogen fertilizer. This process will be discussed in the “Biological Nitrogen Fixation” book. A wide array of free-living and associative nitrogen fixing organisms (diazotrophs) will be covered. The most extensively studied and applied example of biological nitrogen fixation is the symbiotic interaction between nitrogen fixing “rhizobia” and legume plants. While legumes are important as major food and feed crops, cereals such as wheat, maize and rice are the primary food crops, but do not have this symbiotic nitrogen fixing interaction with rhizobia. It has thus been a “holy grail” to transfer the ability to fix nitrogen to the cereals and this topic will be also addressed in these books.展开更多
Electrochemical nitrogen reduction reaction(NRR) to produce ammonia under ambient conditions is considered as a promising approach to tackle the energy-intensive Haber-Bosch process,but the low Faradaic efficiency and...Electrochemical nitrogen reduction reaction(NRR) to produce ammonia under ambient conditions is considered as a promising approach to tackle the energy-intensive Haber-Bosch process,but the low Faradaic efficiency and yield of NH_3 are still a challenge.Herein,a carbon-vacancies enriched mesoporous g-C_3 N_4 is developed by an in situ Zr doping strategy.The in situ mesoporous-forming mechanism is deeply understood by TPSR to reveal the functions of Zr dopant that pulls C from the precursor of C_3 N_4,resulting the formation of homogeneous mesopores with about 57% of the one C-defective s-triazine ring in C_3 N_4.Due to the defect sites obtained in metal doping synthesis,the RuAu bimetallic supported catalyst(RuAu_3/0.3 Zr-C_3 N_4) exhibits effective NRR performance with a Faraday efficiency of 11.54% and an NH_3 yield of 5.28 μg h^(-1) mg_(cat) ^(-1).at-0.1 V(RHE),which is nearly 10 times higher than that of RuAu_3/C_3 N_4 catalyst.This work proposes a simple and template-free preparation method for the high defect density mesoporous C_3 N_4,and provides new possibilities of a wide application of mesopore g-C3 N4.展开更多
Dinitrogen fixation is one of the key reactions in chemistry, which is closely associated with food, environment, and energy. It has been recently recognized that the hydride materials containing negatively charged hy...Dinitrogen fixation is one of the key reactions in chemistry, which is closely associated with food, environment, and energy. It has been recently recognized that the hydride materials containing negatively charged hydrogen(H~-) show promises for Nfixation and hydrogenation to ammonia. Herein, we report that rare earth metal hydrides such as lanthanum hydride can also fix Neither by heating to 200 °C or ball milling under ambient Npressure and temperature. The Nfixation by lanthanum hydride may proceed via an intermediate lanthanum hydride-nitride(La-H-N) structure to form the final lanthanum nitride product. The hydride ion functions as an electron donor, which provides electrons for Nactivation possibly mediated by the lanthanum atoms. It is observed that N–H bond is not formed during the Nfixation process, which is distinctly different from the alkali or alkaline earth metal hydrides. The hydrolysis of La-H-N to ammonia is feasible using water as the hydrogen source. These results provide new insights into the nitrogen fixation by hydride materials and more efforts are needed for the development of rare earth metal-based catalysts and/or nitrogen carriers for ammonia synthesis processes.展开更多
N2 fixation rates(NFR,in terms of N)in the northern South China Sea(nSCS)and the East China Sea(ECS)were measured using the acetylene reduction assay in summer and winter,2009.NFR of the surface water ranged from 1.14...N2 fixation rates(NFR,in terms of N)in the northern South China Sea(nSCS)and the East China Sea(ECS)were measured using the acetylene reduction assay in summer and winter,2009.NFR of the surface water ranged from 1.14 nmol/(L·d)to 10.40 nmol/(L·d)(average at(4.89±3.46)nmol/(L·d),n=11)in summer and 0.74 nmol/(L·d)to 29.45 nmol/(L·d)(average at(7.81±8.50)nmol/(L·d),n=15)in winter.Significant spatio-temporal heterogeneity emerged in our study:the anticyclonic eddies(AE)(P<0.01)and the Kuroshio Current(KC)(P<0.05)performed significantly higher NFR than that in the cyclonic eddies or no-eddy area(CEONE),indicating NFR was profoundly influenced by the physical process of the Kuroshio and mesoscale eddies.The depth-integrated N2 fixation rates(INF,in terms of N)ranged from 52.4μmol/(m2·d)to 905.2μmol/(m2·d)(average at(428.9±305.5)μmol/(m2·d),n=15)in the winter.The contribution of surface NFR to primary production(PP)ranged from 1.7%to 18.5%in the summer,and the mean contribution of INF to new primary production(NPP)in the nSCS and ECS were estimated to be 11.0%and 36.7%in the winter.The contribution of INF to NPP(3.0%–93.9%)also decreased from oligotrophic sea toward the eutrophic waters affected by runoffs or the CEONE.Furthermore,we observed higher contributions compared to previous studies,revealing the vital roles of nitrogen fixation in sustaining the carbon pump of the nSCS and ECS.展开更多
Three species of the spittlebug genus Sphenorhina (Hemiptera: Cercopidae) have been observed in association with Crassocephalum crepidioides and Chromolaena ordorata, weedy tropical species in the family Asteraceae...Three species of the spittlebug genus Sphenorhina (Hemiptera: Cercopidae) have been observed in association with Crassocephalum crepidioides and Chromolaena ordorata, weedy tropical species in the family Asteraceae that have been implicated as nitrogen-fixing plants. The spittlebugs may be serving as indirect indicators of nitrogen fixation in some species of Asteraceae, a group in which nitrogen fixation has not been well established.展开更多
Planting grass and legume mixtures on improved grasslands has the potential advantage of realizing both higher yields and lower environmental pollution by optimizing the balance between applied N fertilizer and the na...Planting grass and legume mixtures on improved grasslands has the potential advantage of realizing both higher yields and lower environmental pollution by optimizing the balance between applied N fertilizer and the natural process of legume biological nitrogen fixation. However, the optimal level of N fertilization for grass-legume mixtures, to obtain the highest yield, quality, and contribution of N2 fixation, varies with species. A greenhouse pot experiment was conducted to study the temporal dynamics of N2 fixation of alfalfa (Medicago sativa L.) grown alone and in mixture with smooth bromegrass (Bromus inermis Leyss.) in response to the addition of fertilizer N. Three levels of N (0, 75, and 150 kg ha-1) were examined using 15N-labeled urea to evaluate N2 fixation via the 15N isotope dilution method. Treatments were designated NO (0.001 g per pot), N75 (1.07 g per pot) and N150 (2.14 g per pot). Alfalfa grown alone did not benefit from the addition of fertilizer N; dry matter was not significantly increased. In contrast, dry weight and N content of smooth bromegrass grown alone was increased significantly by N application. When grown as a mixture, smooth bromegrass biomass was increased significantly by N application, resulted in a decrease in alfalfa biomass. In addition, individual alfalfa plant dry weight (shoots+roots) was significantly lower in the mixture than when grown alone at all N levels. Smooth bromegrass shoot and root dry weight were significantly higher when grown with alfalfa than when grown alone, regardless of N application level. When grown alone, alfalfa's N2 fixation was reduced with N fertilization (R2=0.9376,P=0.0057). When grown in a mixture with smooth bromegrass, with 75 kg ha-1 of N fertilizer, the percentage of atmospheric N2 fixation contribution to total N in alfalfa (%Ndfa) had a maximum of 84.07 and 83.05% in the 2nd and 3rd harvests, respectively. Total 3-harvest %Ndfa was higher when alfalfa was grown in a mixture than when grown alone (shoots: |t|=3.39, P=0.0096; root: |t|=3.57, P=0.0073). We believe this was due to smooth bromegrass being better able to absorb available soil N (due to its fibrous root system), resulting inlower soil N availability and allowing alfalfa to develop an effective N2 fixing symbiosis prior to the 1st harvest. Once soil N levels were depleted, alfalfa was able to fix N2, resulting in the majority of its tissue N being derived from biological nitrogen fixation (BNF) in the 2nd and 3rd harvests. When grown in a mixture, with added N, alfalfa established an effective symbiosis earlier than when grown alone; in monoculture BNF did not contribute a significant portion of plant N in the N75 and N150 treatments, whereas in the mixture, BNF contributed 17.90 and 16.28% for these treatments respectively. Alfalfa has a higher BNF efficiency when grown in a mixture, initiating BNF earlier, and having higher N2 fixation due to less inhibition by soil-available N. For the greatest N-use-efficiency and sustainable production, grass-legume mixtures are recommended for imDrovino orasslands, usino a moderate amount of N fertilizer (75 kq N ha-l) to provide optimum benefits.展开更多
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400202133157A-0-0-00)partially supported by the State Grid Gansu Electric Power Company,China。
文摘Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables.
基金financially supported by National Natural Science Foundation of China (Grant No. 22172144)Nature Science Foundation of Zhejiang Province (Grant No. LY20B030004)。
文摘In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.
基金supported by the National Natural Science Foundation of China(No.22108108,22205108,and No.22108106)China Postdoctoral Science Foundation No.2022M721381.
文摘Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution to convert N2 to ammonia.However,the poor light absorption and low charge carrier separation efficiency in conventional semiconductors are bottlenecks for the application of this technology.Herein,a facile synthesis of anatase TiO_(2)nanosheets with an abundance of surface oxygen vacancies(TiO_(2)-OV)via the calcination treatment was reported.Photocatalytic experiments of the prepared anatase TiO_(2)samples showed that TiO_(2)-OV nanosheets exhibited remarkably increased ammonia yield for solar-driven N2 fixation in pure water,without adding any sacrificial agents.EPR,XPS,XRD,UV-Vis DRS,TEM,Raman,and PL techniques were employed to systematically explore the possible enhanced mechanism.Studies revealed that the introduced surface oxygen vacancies significantly extended the light absorption capability in the visible region,decreased the adsorption and activation barriers of inert N2,and improved the separation and transfer efficiency of the photogenerated electronhole pairs.Thus,a high rate of ammonia evolution in TiO_(2)-OV was realized.This work offers a promising and sustainable approach for the efficient artificial photosynthesis of ammonia.
基金National Natural Science Foundation of China (3026005430660085)+1 种基金Key Project of Guangxi Academy of Agricultural Sciences (2004002)Natural Science Foundation in Guangxi Zhuang Autonomous Region (0639011)~~
文摘[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.
基金supported by the National Key Research and Development Program of China (2016YFD0300202)the National Natural Science Foundation of China (31671625, 31271669)
文摘In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China. To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS). Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha-1), and CN (conventional N application: 330 kg N ha-1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated. At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant-1 and 0.14 mL h-1 plant-1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively. The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3. The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha-1, 28.5%, and 5.7 kg grain kg-1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively. The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively. Those results suggested that LN with distances of 15-30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping. Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield.
文摘Ammonia synthesis via the Haber-Bosch process, which has been heralded as the most important invention of the 20 th century, consumes massive amounts of energy, around 1%–2% of the world’s annual energy consumption. Developing green and sustainable strategies for NH3 synthesis under ambient conditions, using renewable energy, is strongly desired, by both industrial and sci-entific researchers. Artificial photosynthesis for ammonia synthesis, which has recently attracted significant attention, directly produces NH3 from sunlight, and N2 and H2O via photocatalysis. This has been regarded as an ideal, energy-saving and environmentally-benign process for NH3 produc-tion because it can be performed under normal temperature and atmospheric pressure using re-newable solar energy. Although sustainable developments have been achieved since the pioneering work in 1977, many challenging issues(e.g., adsorption and activation of nitrogen molecules on the surface of photocatalysts under mild conditions) have still not been well solved and the photocata-lytic activities are generally low. In this miniature review, I summarize the most recent progress of photocatalytic N2 fixation for ammonia synthesis, focusing specifically on two attractive aspects for adsorption and activation of nitrogen molecules: one is engineering of oxygen vacancies, and the other is mimicking natural nitrogenase for constructing artificial systems for N2 fixation. Several representative works focusing on these aspects in artificial systems have been reported recently, and it has been demonstrated that both factors play more significant roles in photocatalytic N2 re-duction and fixation under ambient conditions. At the end of the review, I also give some remarks and perspective on the existing challenges and future directions in this field.
基金Project(2018YFC1801804)supported by the National Key R&D Program of ChinaProjects(2016JJ3146,2017JJ3160)supported by the Natural Science Foundation of Hunan Province,China。
文摘To reveal the intraspecific evolution of Leptospirillum ferriphilum isolates which thrived in industrial bioleaching ecosystems and acid mine drainages,genome sequences of L.ferriphilum YSK,L.ferriphilum DX and L.ferriphilum ZJ were determined to compare with complete genome of L.ferriphilum ML-04.The genome comparisons reveal that extensive intraspecific variation occurs in their genomes,and that the loss and insertion of novel gene blocks of probable phage origin may mostly contribute to heterogeneity of gene content among L.ferriphilum genomes.Surprisingly,a nif gene cluster is identified in L.ferriphilum YSK and L.ferriphilum ZJ genomes.Intensive analysis and further experiments indicate that the nif gene cluster in L.ferriphilum YSK inherits from ancestor rather than lateral gene transfer.Overall,results suggest that the population of L.ferriphilum undergoes frequent genetic recombination,resulting in many closely related genome types in recent evolution.The combinatorial processes profoundly shape their physiologies and provide the basis for adaptation to different niches.
基金supported by National Natural Science Foundation of China(21776118,21808090)Natural Science Foundation of Jiangsu Province(BK20190981)+3 种基金Jiangsu Fund for Distinguished Young Scientists(BK20190045)China Postdoctoral Science Foundation(2019M661765)High-tech Research Key laboratory of Zhenjiang(SS2018002)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the high-performance computing platform of Jiangsu University。
文摘Reducing nitrogen to ammonia with solar energy has become a wide concern when it comes to photocatalysis research.It is considered to be one of the more promising alternate options for the conventional Haber-Bosch cycle.Herein,2D g-C_(3)N_(4)composites with modifying ultrathin sheet MnO_(2-x)were prepared and used as nitrogen fixation photocatalyst.With the assistance of the nature of MnO_(2-x),the generation rate of NH_(3)reached 225 mmol g^(-1)h^(-1),which is more than twice over the rate of pristine 2D g-C_(3)N_(4)(107 mmol g^(-1)h^(-1)).The presence of ultrathin sheet MnO_(2-x)shortens the gap of the carriers to the surface of photocatalyst.Thus the speed of electron transfer gets increased.Besides,the construction of Z-scheme heterojunction boosts the separation and migration of photogenerated carriers.As a result,the nitrogen reduction reaction(NRR)performance gets enhanced.The work may provide an example of promoting the NRR performance of non-metallic compound.
文摘The influences of frequency on nitrogen fixation of dielectric barrier discharge in air were studied by electrical diagnostics, gas detection and infrared detection methods. The system power, nitrogen oxide concentration, voltage-current waveform, dielectric surface temperature distribution and filamentous discharge pictures were measured, and then the energy yield was calculated; paper studied their changing tendencies in the presence of frequency. Results show that frequency has strong influences on nitrogen fixation. When the parameters of reaction chamber and amplitude of applied voltage is fixed, with the increasing of frequency, the system power increases; in 5-10 kHz, nitrogen oxide gas concentration up to 1113.7 mg m-3, and 7 kHz is the optimal nitrogen fixation frequency whose energy yield is 20.5 mR (m3 W)-1.
基金partly supported by National Natural Science Foundation of China (No. 11975061)the Technology Innovation and Application Development Project of Chongqing (No. cstc2019jscx-msxmX0041)+1 种基金the Construction Committee Project of Chongqing (No. 2018-1-3-6)the Fundamental Research Funds for the Central Universities (No. 2019CDQYDQ034)。
文摘Efficient nitrogen fixation through a reactive plasma process attracts intense interest due to the environmental issues induced by the conventional Haber–Bosch method. In this work, we present a direct and simple fixation routine without any catalysts for nitrogen in open air using an atmospheric-pressure pin-to-solution plasma electrolytic system. Nitrate, nitrite, and ammonia as the nitrogen-derived chemicals in solution were analyzed as indicators under various discharge conditions to estimate the energy efficiency of this process. The results show that the nitrogen fixation process was much more efficient by the pin-positive discharge compared to the negative one. N chemicals preferred to be formed when the solution was of negative polarity. It was also found that, with the help of solution circulation, the energy efficiency was enhanced compared to that of static liquid. However, an inverse trend was observed with the increase of the discharge current. Further study by optical emission spectroscopy indicates the important roles of active N2* and water vapour and their derived species near the plasma–water interface in the fixation process.
基金partially supported by key Academic Discipline of Organic Chemistry of Jiangsu Province
文摘Plasma processing induced by discharge offers a unique way to activate nitrogen molecules. Direct nitrogen fixation into water can be realized through this approach. In this study, air or pure nitrogen gas was used as the major nitrogen source bubbled into the discharge reactor. When a discharge occurred, nitrogen was dissociated to active species to take part in the aqueous chemical process. HNO3 and HNO2 were produced. The nitrogen fixation process was influenced distinctly by the presence of hydroxyl radicals. During a discharge of 21 min, HNO3 was the main product and occupied 95% of the total nitrogen content in water. Its concentration was 1.36 × 10^-3 mol/L^-1 with bubbling air and was 1.53 × 10^-3 mol L^-1 with bubbling nitrogen, while the yield was 2.32 × 10^-3 mol J^-1S^-1 and 2.06 × 10^-8 mol J^-1S^-1, respectively.
基金supported by the National Natural Science Foundation of China(51761024)Natural Science Foundation of Gansu Province(20JR10RA241)+2 种基金Longyuan Youth Innovative and Entrepreneurial Talents Project([2021]17)Central Government Guides Local Science and Technology Development Project(206Z1003G)Key Project of Education Department of Hebei Province(ZD2020339).
文摘Electrocatalytic N_(2) fixation through N_(2) reduction reaction(NRR)has been regarded as a promising route for sustainable NH_(3) synthesis,while exploring high-performing NRR catalysts is pivotal yet challenging.Herein,BN quantum dots/Ti_(3)C_(2)T_(x)-MXene(BNQDs/Ti_(3)C_(2)T_(x))heterostructure is demonstrated as an efficient and durable NRR catalyst,exhibiting a high NH_(3) yield of 52.8±3.3μg h^(-1) mg^(-1) with an FE of 19.1±1.6%at0.4 V(vs.RHE),which stand at the high level among all reported BN-and MXene-based NRR catalysts.Theoretical computations reveal that the electronic interactions between BNQDs and Ti_(3)C_(2)T_(x) enrich the electron density of B atoms at the heterointerface and endow them with enhanced electron-donating capability for N_(2) activation and protonation.Meanwhile,the decorated BNQDs can block the active sites of Ti_(3)C_(2)T_(x) for hydrogen evolution,rendering a high N_(2)-to-NH_(3) selectivity.
文摘Inoculation density has a marked effect on nodulation and N fixation in soybean (Glycine max L.). Therefore, we conducted this study to determine the optimal inoculation density of Bradyhizobium japonicum SAY3-7 (SAY3-7) and Streptomyces griseoflavus P4 (P4) for plant growth, nodulation, and N fixation, and to investigate the effect of co-inoculation on selected soybean cultivars, using the optimal inoculation density. Nitrogen fixation, in terms of an acetylene reduction activity value, was measured using a flame ionization gas chromatograph. In this study, low-density single inoculation with P4 (10<sup>5</sup> or 10<sup>6</sup> cells mL<sup>-1</sup>) was associated with the highest plant biomass, compared with normal- and high-density single inoculation with P4 (10<sup>7</sup> or 10<sup>8</sup> cells mL<sup>-1</sup>). Moreover, low-density single or co-inoculations with SAY3-7 and/or P4 produced the highest nodule biomass and highest nitrogenase activity, compared with single or dual inoculation at other inoculation densities. Therefore, we evaluated low-density co-inoculation with P4 and SAY3-7, at the rate of 10<sup>5</sup> cells mL<sup>-1</sup>, on selected soybean cultivars. Low-density co-inoculation increased the plant biomass, compared with un-inoculated plants. The effects of single and co-inoculation on nodulation did not differ significantly for any of the cultivars, except “Yezin-9” in the first experiment and “Shan Seine” in the second experiment. Low-density inoculation with both bacteria increased N fixation by 15% - 75% for seven of the cultivars in the first experiment and by 15% - 39% for three of the cultivars in the second experiment, compared with single inoculation with SAY3-7. Based on the overall results, we concluded that low-density co-inoculation with P4 and SAY3-7 gave improved plant growth and N fixation.
文摘Biological nitrogen fixation is a very valuable alternative to nitrogen fertilizer. This process will be discussed in the “Biological Nitrogen Fixation” book. A wide array of free-living and associative nitrogen fixing organisms (diazotrophs) will be covered. The most extensively studied and applied example of biological nitrogen fixation is the symbiotic interaction between nitrogen fixing “rhizobia” and legume plants. While legumes are important as major food and feed crops, cereals such as wheat, maize and rice are the primary food crops, but do not have this symbiotic nitrogen fixing interaction with rhizobia. It has thus been a “holy grail” to transfer the ability to fix nitrogen to the cereals and this topic will be also addressed in these books.
基金supported by the National Natural Science Foundation of China (No. 21978259)the Zhejiang Provincial Natural Science Foundation of China (No. LR17B060002)the Fundamental Research Funds for the Central Universities。
文摘Electrochemical nitrogen reduction reaction(NRR) to produce ammonia under ambient conditions is considered as a promising approach to tackle the energy-intensive Haber-Bosch process,but the low Faradaic efficiency and yield of NH_3 are still a challenge.Herein,a carbon-vacancies enriched mesoporous g-C_3 N_4 is developed by an in situ Zr doping strategy.The in situ mesoporous-forming mechanism is deeply understood by TPSR to reveal the functions of Zr dopant that pulls C from the precursor of C_3 N_4,resulting the formation of homogeneous mesopores with about 57% of the one C-defective s-triazine ring in C_3 N_4.Due to the defect sites obtained in metal doping synthesis,the RuAu bimetallic supported catalyst(RuAu_3/0.3 Zr-C_3 N_4) exhibits effective NRR performance with a Faraday efficiency of 11.54% and an NH_3 yield of 5.28 μg h^(-1) mg_(cat) ^(-1).at-0.1 V(RHE),which is nearly 10 times higher than that of RuAu_3/C_3 N_4 catalyst.This work proposes a simple and template-free preparation method for the high defect density mesoporous C_3 N_4,and provides new possibilities of a wide application of mesopore g-C3 N4.
基金the financial support from the National Key R&D Program of China(2021YFB4000401)the National Natural Science Foundation of China(Grant Nos.21922205,21872137,22109158,and 51801197)+2 种基金the Youth Innovation Promotion Association CAS(Grant Nos.2018213,2019189,2022180)the Liaoning Revitalization Talents Program(Grant Nos.XLYC2007173,XLYC2002076)the K.C.Wong Education Foundation(Grant No.GJTD-2018-06)。
文摘Dinitrogen fixation is one of the key reactions in chemistry, which is closely associated with food, environment, and energy. It has been recently recognized that the hydride materials containing negatively charged hydrogen(H~-) show promises for Nfixation and hydrogenation to ammonia. Herein, we report that rare earth metal hydrides such as lanthanum hydride can also fix Neither by heating to 200 °C or ball milling under ambient Npressure and temperature. The Nfixation by lanthanum hydride may proceed via an intermediate lanthanum hydride-nitride(La-H-N) structure to form the final lanthanum nitride product. The hydride ion functions as an electron donor, which provides electrons for Nactivation possibly mediated by the lanthanum atoms. It is observed that N–H bond is not formed during the Nfixation process, which is distinctly different from the alkali or alkaline earth metal hydrides. The hydrolysis of La-H-N to ammonia is feasible using water as the hydrogen source. These results provide new insights into the nitrogen fixation by hydride materials and more efforts are needed for the development of rare earth metal-based catalysts and/or nitrogen carriers for ammonia synthesis processes.
基金The National Natural Science Foundation of China under contract Nos 41876134 and 41406155the University Innovation Team Training Program for Tianjin under contract No.TD12-5003+3 种基金the Tianjin 131 Innovation Team Program under contract No.20180314the Changjiang Scholar Program of Chinese Ministry of Education to Jun Sun under contract No.T2014253the Tianjin Municipal Education Commission Research Program under contract No.2017KJ012the Open Fund of Tianjin Key Laboratory of Marine Resources and Chemistry under contract Nos 201506 and 201801
文摘N2 fixation rates(NFR,in terms of N)in the northern South China Sea(nSCS)and the East China Sea(ECS)were measured using the acetylene reduction assay in summer and winter,2009.NFR of the surface water ranged from 1.14 nmol/(L·d)to 10.40 nmol/(L·d)(average at(4.89±3.46)nmol/(L·d),n=11)in summer and 0.74 nmol/(L·d)to 29.45 nmol/(L·d)(average at(7.81±8.50)nmol/(L·d),n=15)in winter.Significant spatio-temporal heterogeneity emerged in our study:the anticyclonic eddies(AE)(P<0.01)and the Kuroshio Current(KC)(P<0.05)performed significantly higher NFR than that in the cyclonic eddies or no-eddy area(CEONE),indicating NFR was profoundly influenced by the physical process of the Kuroshio and mesoscale eddies.The depth-integrated N2 fixation rates(INF,in terms of N)ranged from 52.4μmol/(m2·d)to 905.2μmol/(m2·d)(average at(428.9±305.5)μmol/(m2·d),n=15)in the winter.The contribution of surface NFR to primary production(PP)ranged from 1.7%to 18.5%in the summer,and the mean contribution of INF to new primary production(NPP)in the nSCS and ECS were estimated to be 11.0%and 36.7%in the winter.The contribution of INF to NPP(3.0%–93.9%)also decreased from oligotrophic sea toward the eutrophic waters affected by runoffs or the CEONE.Furthermore,we observed higher contributions compared to previous studies,revealing the vital roles of nitrogen fixation in sustaining the carbon pump of the nSCS and ECS.
文摘Three species of the spittlebug genus Sphenorhina (Hemiptera: Cercopidae) have been observed in association with Crassocephalum crepidioides and Chromolaena ordorata, weedy tropical species in the family Asteraceae that have been implicated as nitrogen-fixing plants. The spittlebugs may be serving as indirect indicators of nitrogen fixation in some species of Asteraceae, a group in which nitrogen fixation has not been well established.
基金supported by the China Forage and Grass Research System (CARS-35)the National Key Technology R&D Program of China (2011BAD17B01)
文摘Planting grass and legume mixtures on improved grasslands has the potential advantage of realizing both higher yields and lower environmental pollution by optimizing the balance between applied N fertilizer and the natural process of legume biological nitrogen fixation. However, the optimal level of N fertilization for grass-legume mixtures, to obtain the highest yield, quality, and contribution of N2 fixation, varies with species. A greenhouse pot experiment was conducted to study the temporal dynamics of N2 fixation of alfalfa (Medicago sativa L.) grown alone and in mixture with smooth bromegrass (Bromus inermis Leyss.) in response to the addition of fertilizer N. Three levels of N (0, 75, and 150 kg ha-1) were examined using 15N-labeled urea to evaluate N2 fixation via the 15N isotope dilution method. Treatments were designated NO (0.001 g per pot), N75 (1.07 g per pot) and N150 (2.14 g per pot). Alfalfa grown alone did not benefit from the addition of fertilizer N; dry matter was not significantly increased. In contrast, dry weight and N content of smooth bromegrass grown alone was increased significantly by N application. When grown as a mixture, smooth bromegrass biomass was increased significantly by N application, resulted in a decrease in alfalfa biomass. In addition, individual alfalfa plant dry weight (shoots+roots) was significantly lower in the mixture than when grown alone at all N levels. Smooth bromegrass shoot and root dry weight were significantly higher when grown with alfalfa than when grown alone, regardless of N application level. When grown alone, alfalfa's N2 fixation was reduced with N fertilization (R2=0.9376,P=0.0057). When grown in a mixture with smooth bromegrass, with 75 kg ha-1 of N fertilizer, the percentage of atmospheric N2 fixation contribution to total N in alfalfa (%Ndfa) had a maximum of 84.07 and 83.05% in the 2nd and 3rd harvests, respectively. Total 3-harvest %Ndfa was higher when alfalfa was grown in a mixture than when grown alone (shoots: |t|=3.39, P=0.0096; root: |t|=3.57, P=0.0073). We believe this was due to smooth bromegrass being better able to absorb available soil N (due to its fibrous root system), resulting inlower soil N availability and allowing alfalfa to develop an effective N2 fixing symbiosis prior to the 1st harvest. Once soil N levels were depleted, alfalfa was able to fix N2, resulting in the majority of its tissue N being derived from biological nitrogen fixation (BNF) in the 2nd and 3rd harvests. When grown in a mixture, with added N, alfalfa established an effective symbiosis earlier than when grown alone; in monoculture BNF did not contribute a significant portion of plant N in the N75 and N150 treatments, whereas in the mixture, BNF contributed 17.90 and 16.28% for these treatments respectively. Alfalfa has a higher BNF efficiency when grown in a mixture, initiating BNF earlier, and having higher N2 fixation due to less inhibition by soil-available N. For the greatest N-use-efficiency and sustainable production, grass-legume mixtures are recommended for imDrovino orasslands, usino a moderate amount of N fertilizer (75 kq N ha-l) to provide optimum benefits.