The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ...The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.展开更多
Greenhouse gas(GHG)emissions and reactive nitrogen(Nr)releases are central environmental problems,which are closely linked to climate change,environmental ecology and crop production.Sustainable development of agricul...Greenhouse gas(GHG)emissions and reactive nitrogen(Nr)releases are central environmental problems,which are closely linked to climate change,environmental ecology and crop production.Sustainable development of agriculture plays an important role in GHG emissions and Nr loss.The life cycle assessment(LCA)method was used to calculate the product and farm carbon footprints(CFs)and nitrogen footprints(NFs)in rice,wheat and maize production in China based on farm survey data.The results pinpointed that the CFs of rice,wheat and maize were 0.87,0.30 and 0.24 kg/kg.Meanwhile,the computed NFs were 17.11,14.26 and 6.83 g/kg,respectively.Synthetic nitrogen fertilizer applications and methane(CH4)emissions were dominant CF sources,while ammonia(NH3)volatilization was the main NF contributor.Moreover,significant decreases in CF and NF by 20%–54%and 33%–61%,respectively,were found in large-size farms(>20 hm^(2))when compared to small-size farms(<0.7 hm^(2)).Furthermore,the significantly positive relationships between CF and NF indicated the potential for simultaneous mitigation in the regions with high agricultural inputs,like amounts of fertilizer.Based on our results,some effective solutions would be favorable toward mitigating climate change and eutrophication of the major cereal crop production in China,especially optimizing fertilizer use and farm machinery operation efficiencies,as well as developing large-size farms with intensive farming.展开更多
为改善传统N-Calculator模型的局限性,加强食物氮足迹核算结果与环境影响的联系,提高活性氮管理预见性,将N-Calculator模型与食物系统养分流动(Nutrient Flows in Food Chains,Environment and Resources Use,NUFER)模型进行耦合,以估...为改善传统N-Calculator模型的局限性,加强食物氮足迹核算结果与环境影响的联系,提高活性氮管理预见性,将N-Calculator模型与食物系统养分流动(Nutrient Flows in Food Chains,Environment and Resources Use,NUFER)模型进行耦合,以估算我国2001—2020年人均食物氮足迹,建立组合预测体系。结果显示:2001—2020年,我国人均食物氮足迹由16.04 kg N/a增至18.95 kg N/a;全国食物氮足迹由20.47 Mt N/a增至26.76 Mt N/a;居民饮食结构正由以植物源食物为主的低氮消费模式转向以动物源食物为主的高氮消费模式;食物生产过程产生的活性氮的最终归宿为大气(64.3%)、水体和深层土壤(35.7%);我国食物氮足迹与人均可支配收入、城市化率、动物源食物消费氮占比呈正相关性,与恩格尔系数呈负相关性;未来10 a我国人均食物氮足迹呈增长趋势,预测结果显示年均增幅为0.16 kg N/a。展开更多
该研究运用生命周期评价方法对规模化生猪农场系统的生猪养殖、粪污处理和水稻种植等过程的碳氮足迹进行特征分析(基准情景S0),并对比了低蛋白日粮(S1)、粪尿酸化(S2)、沼气利用(S3)、水稻侧深施肥(S4)、有机无机配施(S5)以及综合技术(...该研究运用生命周期评价方法对规模化生猪农场系统的生猪养殖、粪污处理和水稻种植等过程的碳氮足迹进行特征分析(基准情景S0),并对比了低蛋白日粮(S1)、粪尿酸化(S2)、沼气利用(S3)、水稻侧深施肥(S4)、有机无机配施(S5)以及综合技术(S6)等减排措施对农场系统环境排放的影响。结果表明:规模化生猪农场系统碳足迹为332.9 kg CO_(2)-eq·FU^(-1),氮足迹为4.55 kg Nr·FU^(-1)。其中,粪便储存环节碳氮足迹的贡献最高,分别占29%和50%。各环节单项技术(S1~S5)应用能够减少碳排放6.44%~11.25%,氮排放6.51%~30.37%;低蛋白日粮技术(S1)和粪尿酸化技术(S2)对农场系统碳、氮足迹的减排效果最佳,分别为11.25%和30.37%;综合技术(S6)能够实现系统碳氮足迹减排35.39%和51.66%。因此,生猪养殖场应重点关注饲料营养和粪尿管理过程,以减少农场系统碳氮排放,实现绿色发展。展开更多
基金support of the National Key R&D Program of China(2023YFD2301500)the China Agriculture System of MOF and MARA(CARS-02)the Shandong Central Guiding the Local Science and Technology Development,China(YDZX20203700002548)。
文摘The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ21C130002)the Engineering Science and Technology Development Strategy Consulting and Research Project of China(Grant No.Js2019-zd01)the Central Public-Interest Scientific Institution Basal Research Fund of China(Grant No.CPSIBRF-CNRRI-202130)。
文摘Greenhouse gas(GHG)emissions and reactive nitrogen(Nr)releases are central environmental problems,which are closely linked to climate change,environmental ecology and crop production.Sustainable development of agriculture plays an important role in GHG emissions and Nr loss.The life cycle assessment(LCA)method was used to calculate the product and farm carbon footprints(CFs)and nitrogen footprints(NFs)in rice,wheat and maize production in China based on farm survey data.The results pinpointed that the CFs of rice,wheat and maize were 0.87,0.30 and 0.24 kg/kg.Meanwhile,the computed NFs were 17.11,14.26 and 6.83 g/kg,respectively.Synthetic nitrogen fertilizer applications and methane(CH4)emissions were dominant CF sources,while ammonia(NH3)volatilization was the main NF contributor.Moreover,significant decreases in CF and NF by 20%–54%and 33%–61%,respectively,were found in large-size farms(>20 hm^(2))when compared to small-size farms(<0.7 hm^(2)).Furthermore,the significantly positive relationships between CF and NF indicated the potential for simultaneous mitigation in the regions with high agricultural inputs,like amounts of fertilizer.Based on our results,some effective solutions would be favorable toward mitigating climate change and eutrophication of the major cereal crop production in China,especially optimizing fertilizer use and farm machinery operation efficiencies,as well as developing large-size farms with intensive farming.
文摘为改善传统N-Calculator模型的局限性,加强食物氮足迹核算结果与环境影响的联系,提高活性氮管理预见性,将N-Calculator模型与食物系统养分流动(Nutrient Flows in Food Chains,Environment and Resources Use,NUFER)模型进行耦合,以估算我国2001—2020年人均食物氮足迹,建立组合预测体系。结果显示:2001—2020年,我国人均食物氮足迹由16.04 kg N/a增至18.95 kg N/a;全国食物氮足迹由20.47 Mt N/a增至26.76 Mt N/a;居民饮食结构正由以植物源食物为主的低氮消费模式转向以动物源食物为主的高氮消费模式;食物生产过程产生的活性氮的最终归宿为大气(64.3%)、水体和深层土壤(35.7%);我国食物氮足迹与人均可支配收入、城市化率、动物源食物消费氮占比呈正相关性,与恩格尔系数呈负相关性;未来10 a我国人均食物氮足迹呈增长趋势,预测结果显示年均增幅为0.16 kg N/a。
文摘该研究运用生命周期评价方法对规模化生猪农场系统的生猪养殖、粪污处理和水稻种植等过程的碳氮足迹进行特征分析(基准情景S0),并对比了低蛋白日粮(S1)、粪尿酸化(S2)、沼气利用(S3)、水稻侧深施肥(S4)、有机无机配施(S5)以及综合技术(S6)等减排措施对农场系统环境排放的影响。结果表明:规模化生猪农场系统碳足迹为332.9 kg CO_(2)-eq·FU^(-1),氮足迹为4.55 kg Nr·FU^(-1)。其中,粪便储存环节碳氮足迹的贡献最高,分别占29%和50%。各环节单项技术(S1~S5)应用能够减少碳排放6.44%~11.25%,氮排放6.51%~30.37%;低蛋白日粮技术(S1)和粪尿酸化技术(S2)对农场系统碳、氮足迹的减排效果最佳,分别为11.25%和30.37%;综合技术(S6)能够实现系统碳氮足迹减排35.39%和51.66%。因此,生猪养殖场应重点关注饲料营养和粪尿管理过程,以减少农场系统碳氮排放,实现绿色发展。