期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Response of nitrogen fractions in the rhizosphere and bulk soil to organic mulching in an urban forest plantation
1
作者 Xiaodan Sun Gang Wang +3 位作者 Yuqian Ye Qingxu Ma Qingwei Guan Davey L.Jones 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2577-2588,共12页
Nitrogen is an essential component in forest ecosystem nutrient cycling.Nitrogen fractions,such as dissolved nitrogen,ammonium,nitrate,and microbial biomass nitrogen,are sensitive indicators of soil nitrogen pools whi... Nitrogen is an essential component in forest ecosystem nutrient cycling.Nitrogen fractions,such as dissolved nitrogen,ammonium,nitrate,and microbial biomass nitrogen,are sensitive indicators of soil nitrogen pools which affect soil fertility and nutrient cycling.However,the responses of nitrogen fractions in forest soils to organic mulching are less well understood.The rhizosphere is an important micro-region that must be considered to better understand element cycling between plants and the soil.A field investigation was carried out on the effect of mulching soil in a 15-year-old Ligustrum lucidum urban plantation.Changes in total nitrogen and nitrogen fractions in rhizosphere and bulk soil in the topsoil(upper 20 cm)and in the subsoil(20-40 cm)were evaluated following different levels of mulching,in addition to nitrogen contents in fine roots,leaves,and organic mulch.The relationships between nitrogen fractions and other measured variables were analysed.Organic mulching had no significant effect on most nitrogen fractions except for the rhizosphere microbial biomass nitrogen(MBN),and the thinnest(5 cm)mulching layer showed greater effects than other treatments.Rhizosphere MBN was more sensitive to mulching compared to bulk soil,and was more affected by soil environmental changes.Season and soil depth had more pronounced effects on nitrogen fractions than mulching.Total nitrogen and dissolved nitrogen were correlated to soil phosphorus,whereas other nitrogen fractions were strongly affected by soil physical properties(temperature,water content,bulk density).Mulching also decreased leaf nitrogen content,which was more related to soil nitrogen fractions(except for MBN)than nitrogen contents in either fine roots or organic mulch.Frequent applications of small quantities of organic mulch contribute to nitrogen transformation and utilization in urban forests. 展开更多
关键词 RHIZOSPHERE nitrogen fraction Organic mulching Soil–plant interaction Urban plantation forest
下载PDF
Changes in Phosphorus Fractions and Nitrogen Forms During Composting of Pig Manure with Rice Straw 被引量:7
2
作者 Lü Dui-an YAN Bai-xing +2 位作者 WANG Li-xia DENG Zhi-qiang ZHANG Yu-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第10期1855-1864,共10页
The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low va... The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low value(〈400 mg kg-1) in the final compost,while the NO 3--N concentration increased.Total N losses mainly occurred during thermophilic phase due to the high temperature,the high NH 4 +-N concentration and the increase of pH value.Labile inorganic P was dominated in the pig manure and initial compost mixture.During composting,the proportion of labile inorganic P of total extracted P decreased,while the proportion of Fe+Al-bound P,Ca+Mg-bound P and residual P increased.The evolutions of the proportion of labile inorganic P,Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value,organic matter and C/N ratio.Therefore,composting could increase the concentration of N and P and decrease the presence of NH 4 +-N and labile P fractions which might cause environmental issues following land application. 展开更多
关键词 composting nitrogen forms phosphorus fractions organic matter pig manure
下载PDF
Subsoil tillage enhances wheat productivity,soil organic carbon and available nutrient status in dryland fields
3
作者 Qiuyan Yan Linjia Wu +6 位作者 Fei Dong Shuangdui Yan Feng Li Yaqin Jia Jiancheng Zhang Ruifu Zhang Xiao Huang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期251-266,共16页
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut... Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China. 展开更多
关键词 TILLAGE dryland wheat fields soil aggregate size soil nutrients soil carbon and nitrogen fractions
下载PDF
Charactering protein fraction concentrations as influenced by nitrogen application in low-glutelin rice cultivars 被引量:11
4
作者 LI Gang-hua CHEN Yi-lu +5 位作者 DING Yan-feng GENG Chun-miao LI Quan LIU Zheng-hui WANG Shao-hua TANG She 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第3期537-544,共8页
To optimize both grain yield and quality of low-glutelin rice cultivars under N-fertilizer strategies, two-year field experiments involving three low-glutelin rice cultivars(W1240, W1721, W025) and an ordinary rice ... To optimize both grain yield and quality of low-glutelin rice cultivars under N-fertilizer strategies, two-year field experiments involving three low-glutelin rice cultivars(W1240, W1721, W025) and an ordinary rice cultivar(H9405) with five N treatments were carried out to determine the effects of N application rate and genotype on protein fractions contents and Glutelin/Prolamin ratio(Glu/Pro). The difference of protein fraction concentrations affected by N application rate existed in genotypes. Ordinary rice cultivar had a larger increase in glutlein concentration affected by N application rate than low-glutelin rice cultivars did. Glutelin in H9405 had a increase of 30.6 and 41.0% under the N4 treatment(360 kg N ha^(–1)) when compared with N0 treatment(no fertilizer N) in 2010 and 2011 respectively, while all the low-glutelin rice cultivars showed relatively smaller increases for two years. Variance analysis showed no significant effect of N application rate on glutelin in W1240 and W025 while the effects on albumin, globulin and prolamin were significant in low-glutelin rice. What's more, N treatment had no significant i nfluence on Glu/Pro ratios in low-glutelin rice cultivars while a significant increase in Glu/Pro ratio was observed in ordinary rice cultivar. So low-gultelin rice cultivars showed a different pattern from ordinary rice cultivars when influenced by N application rate. 展开更多
关键词 low-glutelin rice nitrogen protein fractions Glu/Pro
下载PDF
Nitrogen Isotopic Fractionation Related to Nitrification Capacity in Agricultural Soils 被引量:1
5
作者 SONG Ge ZHAO Xu +1 位作者 WANG Shen-Qiang XING Guang-Xi 《Pedosphere》 SCIE CAS CSCD 2014年第2期186-195,共10页
A laboratory-based aerobic incubation was conducted to investigate nitrogen (N) isotopic fractionation related to nitrification in five agricultural soils after application of ammonium sulfate ((NH4)2804). The s... A laboratory-based aerobic incubation was conducted to investigate nitrogen (N) isotopic fractionation related to nitrification in five agricultural soils after application of ammonium sulfate ((NH4)2804). The soil samples were collected from a subtropical barren land soil derived from granite (RGB), three subtropical upland soils derived from granite (RQU), Quaternary red earth (RGU), Quaternary Xiashu loess (YQU) and a temperate upland soil generated from alluvial deposit (FAU). The five soils varied in nitrification potential, being in the order of FAU 〉 YQU 〉 RGU 〉 RQU 〉 RGB. Significant N isotopic fractionation accompanied nitrification of NH4+. 615N values of NH4+ increased with enhanced nitrification over time in the four upland soils with NH4+ addition, while those of NO3 decreased consistently to the minimum and thereafter increased. 515N values of NH4+ showed a significantly negative linear relationship with NH4+-N concentration, but a positive linear relationship with NO3-N concentration. The apparent isotopic fractionation factor calculated based on the loss of NH4+ was 1.036 for RQU, 1.022 for RGU, 1.016 for YQU, and 1.020 for FAU, respectively. Zero- and first-order reaction kinetics seemed to have their limitations in describing the nitrification process affected by NH4+ input in the studied soils. In contrast, N kinetic isotope fractionation was closely related to the nitrifying activity, and might serve as an alternative tool for estimating the nitrification capacity of agricultural soils. 展开更多
关键词 NH+4 addition NITRIFICATION nitrogen isotope fractionation reaction kinetics
原文传递
Effects of tillage on soil nitrogen and its components from rice-wheat fields in subtropical regions of China 被引量:1
6
作者 Siyuan Cui Xinkai Zhu Guangqiao Cao 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第3期146-152,共7页
It is of great significance to explore the effects of different tillage practices on total nitrogen and its components in rice-wheat rotation farmland.The experiment was carried out in Jiangyan County,Jiangsu Province... It is of great significance to explore the effects of different tillage practices on total nitrogen and its components in rice-wheat rotation farmland.The experiment was carried out in Jiangyan County,Jiangsu Province of China,and a total of four treatments were set up:minimum tillage(MT),rotary tillage(RT),conventional tillage(CT),and conventional tillage without straw retention(CT0).The total nitrogen(TN),light fraction nitrogen(LFN),heavy fraction nitrogen(HFN),particulate nitrogen(PN),and mineral-associated nitrogen(MN)in 0-20 cm soil were determined.The results show that MT increased TN concentration by2.26%-27.57%compared with the other treatments in 0-5 cm soil,but it lost this advantage in 5-10 cm and 10-20 cm soil.MT altered the concentration of LFN by 6.03%-95.86%,of HFN by 1.68%-20.75%,of PN by 12.58%-96.83%,and of MN by−1.73%-9.83%as compared to RT,CT,and CT0 in 0-5 cm soil,respectively.With the deepened of soil depth,the concentration of TN,LFN,HFN,PN,and MN decreased quickly in MT,which was lower than that in RT and CT at 10-20 cm soil depth.Straw return increased the concentration of TN and its components in 0-20 cm soil.The concentration of TN was extremely significantly positively correlated with that of LFN,HFN,PN,and MN(p<0.01).The variation of TN was significantly positively correlated with that of LFN,HFN,PN,and MN(p<0.01),and LFN showed the highest sensitivity to tillage practice.In general,minimum tillage combined with straw retention increased the concentration of soil TN and its components in topsoil.LFN was the best indicator to indicate the change in soil total nitrogen affected by tillage practice. 展开更多
关键词 rice-wheat rotation soil active nitrogen components light fraction nitrogen heavy fraction nitrogen particulate nitrogen mineral-associated nitrogen
原文传递
Impacts of silver nanoparticles on enzymatic activities,nitrifying bacteria,and nitrogen transformation in soil amended with ammonium and nitrate
7
作者 Xiaohong LIU Juan WANG +2 位作者 Lingli WU Li ZHANG Youbin SI 《Pedosphere》 SCIE CAS CSCD 2021年第6期934-943,共10页
Silver nanoparticles(AgNPs)are effective antimicrobial compounds that are used in a myriad of applications.Soil microorganisms play crucial roles in nitrogen cycling,but there is a lack of comprehensive understanding ... Silver nanoparticles(AgNPs)are effective antimicrobial compounds that are used in a myriad of applications.Soil microorganisms play crucial roles in nitrogen cycling,but there is a lack of comprehensive understanding of the effects of Ag NPs on enzymatic activity in the nitrogen cycle,nitrifying bacteria,and nitrogen transformation in soil.Herein,enzyme activities were determined following the addition of different forms of nitrogen,ammonium nitrogen((NH_(4))_(2)SO_(4)),nitrate nitrogen(KNO_(3)),and amide nitrogen(urea,CO(NH_(2))_(2))at 200 mg N kg^(-1),into the soil amended with AgNPs at 0,10,50,and 100 mg kg^(-1).After 7 d of incubation with 10 mg kg^(-1) Ag NPs,the activities of urease,nitrite reductase(NiR),nitrate reductase(NaR),and hydroxylamine reductase(HyR)were reduced by 12.5%,25.0%,12.2%,and 24.2%,respectively.Of particular note,more than 53.5%,61.7%,and 34.7% of Na R,NiR,and HyR activities,respectively,were inhibited at 100 mg kg^(-1) Ag NPs.The abundance(most probable number)of ammonia-and nitrite-oxidizing bacteria(AOB and NOB,respectively)was measured using real-time quantitative polymerase chain reaction(qPCR)and the Cochran method.The abundance of AOB and NOB decreased when Ag NPs were present in the soil.The NH_(4)NO_(3) amendment increased copy numbers of bacterial and archaeal amo A nitrification functional genes,by 38.3% and 12.4%,respectively,but AgNPs at 50 mg kg^(-1) decreased these values by 70% and 56.4%,respectively.The results of ^(15)N enrichment(atom% excess)of NH_(4)^(+) and NO_(3)^(-) experiments illustrated the influence of AgNPs on soil nitrogen transformation.According to the ^(15)N atom% excess detected,the conversion of ^(15)N-labeled NH_(4)^(+) to NO_(3)^(-) was significantly inhibited by the different levels of Ag NPs in soil.The reduced gross nitrification rate further confirmed this finding.Overall,this study revealed considerable evidence that AgNPs inhibited nitrogen cycle enzyme activity,the number of nitrifying bacteria,the abundance of the amo A gene,and the gross nitrification rate.Silver nanoparticles inhibited nitrogen transformation,and the rate of nitrification was also negatively correlated with AgNP levels. 展开更多
关键词 AMOA gross N transformation nitrification gene nitrogen cycling nitrogen isotope fractionation soil enzyme activities
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部