期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Co-Ce-Ni Ternary Metal Oxide Modified N-activated Carbon:The Superior Low Temperature NH3-SCR Performance 被引量:2
1
作者 Wang Pei Li Yuan +3 位作者 Liu Jun Liu Xiaoqing Tan Yingxin Zhang Yongfa 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第2期84-97,共14页
Introducing reduced metal and nitrogen species is a powerful strategy to improve the reactivity of carbon-based materials for selective catalytic reduction of NO_(x) with NH_(3).To further improve the NH_(3)-SCR perfo... Introducing reduced metal and nitrogen species is a powerful strategy to improve the reactivity of carbon-based materials for selective catalytic reduction of NO_(x) with NH_(3).To further improve the NH_(3)-SCR performance of non-pitch coal activated coke(NPAC),a series of metal oxides(e.g.,Co,Ce,and Ni)were loaded on nitrogen modified NPAC.The outstanding performance of NPAC-N-CoCeNi as well as the superior SO_(2)-and H_(2)O-tolerate performance are attributed to the extra electrons caused by the modification of N species,and these extra electrons are more conducive to the electron transfer.More importantly,the interaction of the major active component Co^(3+)and the promoter catalysts CeO_(2),NiOx,or CoNiO_(2) can also increase the charge transfer and produce more oxygen vacancy and unsaturated chemical bonds,leading to improving the redox performance of NPAC-N-CoCeNi.In addition,the NH3-SCR reaction is promoted after the metal oxides co-doping mainly via the Mars-van-Krevelen mechanism. 展开更多
关键词 non-pitch coal activated coke nitrogen modification metal oxide loading NH_(3)-SCR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部