[Objective] This study aimed to investigate the effect of spraying the mixture of paclobutrazol and ethephon on the endogenous hormones and carbon and nitrogen nutrients in litchi variety 'Feizixiao'.[Method] [Resul...[Objective] This study aimed to investigate the effect of spraying the mixture of paclobutrazol and ethephon on the endogenous hormones and carbon and nitrogen nutrients in litchi variety 'Feizixiao'.[Method] [Result] The results showed that foliar spraying of the mixture of paclobutrazol and ethephon could effectively inhibit litchi variety 'Feizixiao' to produce winter shoots,promote the flower bud differentiation and improve flower formation rate; meanwhile,this treatment could also increase the contents of ABA and ZR,and the ratios of ABA/IAA,ABA/GA3,ZR/IAA,ZR/GA3,and decrease the contents of IAA and GA3; additionally,it could increase the contents of soluble sugar,starch and total nitrogen,and raise C/N ratio,thus improving the flower formation rate.[Conclusion] Foliar spraying of the mixture of paclobutrazol and ethephon is an effective pathway for solving warmth damage to litchi.展开更多
Field experiments of nitrogen(N)treatment at five different application rates(0,75,150,225,and 300 kg ha^(-1))were conducted under pot-seedling mechanical transplanting(PMT)in 2018 and 2019.Two high-quality and high-y...Field experiments of nitrogen(N)treatment at five different application rates(0,75,150,225,and 300 kg ha^(-1))were conducted under pot-seedling mechanical transplanting(PMT)in 2018 and 2019.Two high-quality and high-yielding hybrids of indica rice,Huiliangyou 898 and Y Liangyou 900,were used in this study.The N nutrition index(NNI)and accumulated N deficit(N_(and)),used to assess the N nutrition status in real-time,were calculated for the indica cultivars under PMT with a critical nitrogen concentration(N_(c))dilution model based on shoot dry matter(DM)during the whole rice growth stage.The relationships between NNI and N_(and) with relative yield(RY)were determined,and accurate N application schemes were developed for hybrids indica rice under PMT.The results indicated that high application rate of N-fertilizer significantly increased the concentrations of shoot DM and N in aboveground organs during the observed stages in the two cultivars for two years(P<0.05).The N_(c) dilution model of hybrid indica cultivars was N_(c)=4.02 DM^(-0.42)(R^(2)=0.97)combining the two cultivars under PMT.Root-mean-square error and normalized root-mean-square error of the curve verification were 0.23 and 10.61%,respectively.The NNI and Nand ranged from 0.58 to 1.31 and 109 to–55 kg ha^(-1),respectively,in the two cultivars for all N treatments.NNI showed a linear relationship with Nand during the entire growth stage(0.53<R^(2)<0.99,P<0.01).In addition,NNI showed a linear-plateau relationship with RY(0.73<R<0.92,P<0.01)throughout the observed stages.These results suggest that the models can accurately diagnose the N-nutrition status and support effective N-fertilizer management in real-time for hybrid indica rice under PMT.展开更多
Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Cha...Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Changbai Mountains, Northeast China. Amounts of total nitrogen, anunonium and NRA in soils of virgin broad-leaved/Korean pine forest which is in climax were higher than those of secondary birch forests those are in succession Stage. The amount of nitrate was in the other hand. In climax, dominance trees species are tolerant mesophytic trees such as Pinus Koraiensis, Tilia amurensis, Acer mono and also Fraxinus mandshurica, they are all ammonium + nitrate adapted species, but they show a preference for the anunonium rather than those of the pioneer trees species in secondary birch forest, such as Populus davidiava and Betula platyphylla. Because they have more ammonium in their leaves and roots, especially Pinus koraiensis. Populus davidvana and Betula plaaphlla are intolerant trees, amounts of nitrate and total nitrogen is higher in their leaves and roots and also NRA in their leaves, so they preference for the nitrate rather than the others.In secondary birch forest, the regeneration trees species adapt their nitroggn nutrient to the variation of nitrogen nutrient situation in soil, finally they could survival well and the secondary birch forest would succession to climax. In climax, dominance trees species adapt their Nitrogen nutrient to the situation in soil and there are not strong competition in nitrogen nutrient among them, so they can coexist well and keep the climax as stable vegetation.展开更多
The greenness (SPAD) of uneven-aged leaves of dominant species in the Castanopsis carlessi forest at different altitude gradients in Lingshishan National Forest Park, Fujian Province, China were measured by using po...The greenness (SPAD) of uneven-aged leaves of dominant species in the Castanopsis carlessi forest at different altitude gradients in Lingshishan National Forest Park, Fujian Province, China were measured by using portable chlorophyll meter SPAD-502. In addition, the correlation between SPAD value and the concentration of chlorophyll and foliar nitrogen was also investigated. Significant variations in SPAD values were found between the uneven-aged leaves of different dominant species and different altitude gradients. Regression analysis showed that SPAD value was significantly correlated with the concentration of chlorophyll and the content of foliar nitrogen, indicating that SPAD value could be indicators for foliar chlorophyll and nitrogen. It is suggested that SPAD meter is a useful tool for forest assessments in decision-making and operational nutrient management programs.展开更多
In recent years, natural environment of the Jiaozhou Bay has been changed largely by fast developing industry and agriculture of the cities around, from which wastewaters were generated. The size of the bay has been c...In recent years, natural environment of the Jiaozhou Bay has been changed largely by fast developing industry and agriculture of the cities around, from which wastewaters were generated. The size of the bay has been continuously shrunk with reduced river flows, resulting in serious contamination to the marine lives in the bay. After analyzing the basic historical data, the authors put forward a suggestion of how to protect the bay ecology for sustaining the resources in the Jiaozhou Bay.展开更多
The Bohai Rim region is one the most important bases for commodity grain production in China. With the rapid pace of agricultural industrialization, nitrogenous fertilizer has been used at an ever increasing rate, whi...The Bohai Rim region is one the most important bases for commodity grain production in China. With the rapid pace of agricultural industrialization, nitrogenous fertilizer has been used at an ever increasing rate, which resulted in the trace of accumulative nitrogen in the soil and caused serious environmental problems. In this study we made use of the farmland nitrogen balance model to assess the spatial difference of farmland nitrogen nutrient budget in the Bohai Rim region in 2008 with the assistance of GIS. Our results indicated that: 1) Farmland in this region has a nitrogen surplus totaling 5.0822 million tons, or an average of 288.54 kg/ha. 2) In the Bohai Rim region, farmland nitrogen input and farmland nitrogen budget both show a spatial differentiation. Major grain-producing areas have a higher nitrogen input than that of the grazing-farming areas. The main sources of nitrogen input include chemical fertilizer, organic fertilizer, deposition from atmospheric drying and wetting, and biological fixation, which account for 79.47%, 9.53%, 4.62%, and 3.58% of the total input, respectively. Therefore, chemical fertilizer is the predominant source of nitrogen input to farmland. 3) A total of 3.3398 million tons of nitrogen were output from the farmland via harvested crops and it accounts for 52.36% of the total nitrogen output from farmland in this region. On average, the amount of nitrogen output from unit farmland is equal to 176.65kg/ha. This study has shed light on farmland nitrogen budget and its spatial variation in the study area, may provide scientific evidences for rationalizing the use of chemical fertilizer and managing agricultural operation on the regional scale and is also valuable for improving the economic and ecological efficiency of fertilizer use at the regional scale.展开更多
In order to reveal the mechanism of silicon(Si)fertilizer in improving nitrogen(N)and phosphorus(P)nutrient availability in paddy soil,we designed a series of soil culture experiments by combining application of varyi...In order to reveal the mechanism of silicon(Si)fertilizer in improving nitrogen(N)and phosphorus(P)nutrient availability in paddy soil,we designed a series of soil culture experiments by combining application of varying Si fertilizer concentrations with fixed N and P fertilizer concentrations.Following the recommendations of fertilizer manufacturers and local farmers,we applied Si in concentrations of 0,5.2,10.4,15.6,and 20.8μg/kg.At each concentration of added Si,the availability of soil N and P nutrients,soil microbial activity,numbers of ammonia-oxidizing bacteria and P-decomposing bacteria which means that the organic P is decomposed into inorganic nutrients which can be absorbed and utilized by plants,and urease and phosphatase activity first increased,and then decreased,as Si was added to the soil.These indicators reached their highest levels with a Si application rate of 15.6μg/kg,showing values respectively 19.78%,105.09%,8.34%,73.12%,130.36%,28.12%,and 20.15%higher than those of the controls.Appropriate Si application(10.4 to 15.6µg/kg)could significantly increase the richness of the soil microbial community involved in cycling of N and P nutrients in the soil.When the Si application rate was 15.6μg/kg,parameters for characterizing microbial abundance such as sequence numbers,operational taxonomic unit(OTU)number,and correlation indices of microbial community richness such as Chao1 index,the adaptive coherence estimator(ACE)index,Shannon index,and Simpson index all reached maximum values,with amounts increased by 14.46%,10.01%,23.80%,30.54%,0.18%,and 2.64%,respectively,compared with the control group.There is also a good correlation between N and P mineralization and addition of Si fertilizer.The correlation coefficients between the ratio of available P/total P(AP/TP)and the number of ammonia-oxidizing bacteria,AP/TP and acid phosphatase activity(AcPA),AP/TP and the Shannon index,the ratio of available N/total amount of N(AN/TN)and the number of ammoniated bacteria,and AN/TN and AcPA were 0.9290,0.9508,0.9202,0.9140,and 0.9366,respectively.In summary,these results revealed that enhancement of soil microbial community structure diversity and soil microbial activity by appropriate application of Si is the key ecological mechanism by which application of Si fertilizer improves N and P nutrient availability.展开更多
Improving crop nutrient ef ficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements,among them,n...Improving crop nutrient ef ficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements,among them,nitrogen(N) and phosphorus(P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity,and thereby have become high priority targets for improving nutrient ef ficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore,root architecture,the 3-dimensional con figuration of the plant's root system in the soil,is of great importance for improving crop nutrient ef ficiency. Furthermore,the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria,are additional important strategies to enhance nutrient acquisition. In this review,we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses,through gene or QTL regulation,which results in enhanced nutrient acquisition.展开更多
Excessive nitrogen(N) and phosphorus(P) loading of aquatic ecosystems is a leading cause of eutrophication and harmful algal blooms worldwide, and reducing nutrient levels in water has been a primary management ob...Excessive nitrogen(N) and phosphorus(P) loading of aquatic ecosystems is a leading cause of eutrophication and harmful algal blooms worldwide, and reducing nutrient levels in water has been a primary management objective. To provide a rational protection strategy and predict future trends of eutrophication in eutrophic lakes, we need to understand the relationships between nutrient ratios and nutrient limitations. We conducted a set of outdoor bioassays at the shore of Lake Taihu. It showed that N only additions induced phytoplankton growth but adding only P did not. Combined N plus P additions promoted higher phytoplankton biomass than N only additions, which suggested that both N and P were deficient for maximum phytoplankton growth in this lake(TN:TP = 18.9). When nutrients are present at less than 7.75–13.95 mg/L TN and 0.41–0.74 mg/L TP, the deficiency of either N or P or both limits the growth of phytoplankton. N limitation then takes place when the TN:TP ratio is less than 21.5–24.7(TDN:TDP was 34.2–44.3), and P limitation occurs above this. Therefore, according to this ratio, controlling N when N limitation exists and controlling P when P deficiency is present will prevent algal blooms effectively in the short term. But for the long term, a persistent dual nutrient(N and P) management strategy is necessary.展开更多
文摘[Objective] This study aimed to investigate the effect of spraying the mixture of paclobutrazol and ethephon on the endogenous hormones and carbon and nitrogen nutrients in litchi variety 'Feizixiao'.[Method] [Result] The results showed that foliar spraying of the mixture of paclobutrazol and ethephon could effectively inhibit litchi variety 'Feizixiao' to produce winter shoots,promote the flower bud differentiation and improve flower formation rate; meanwhile,this treatment could also increase the contents of ABA and ZR,and the ratios of ABA/IAA,ABA/GA3,ZR/IAA,ZR/GA3,and decrease the contents of IAA and GA3; additionally,it could increase the contents of soluble sugar,starch and total nitrogen,and raise C/N ratio,thus improving the flower formation rate.[Conclusion] Foliar spraying of the mixture of paclobutrazol and ethephon is an effective pathway for solving warmth damage to litchi.
基金the National Key R&D Program of China(2016YFD0300608,2016YFD0300505 and 2017YFD0301305)the Key Research and Development Program of Anhui Province,China(1804h07020150)。
文摘Field experiments of nitrogen(N)treatment at five different application rates(0,75,150,225,and 300 kg ha^(-1))were conducted under pot-seedling mechanical transplanting(PMT)in 2018 and 2019.Two high-quality and high-yielding hybrids of indica rice,Huiliangyou 898 and Y Liangyou 900,were used in this study.The N nutrition index(NNI)and accumulated N deficit(N_(and)),used to assess the N nutrition status in real-time,were calculated for the indica cultivars under PMT with a critical nitrogen concentration(N_(c))dilution model based on shoot dry matter(DM)during the whole rice growth stage.The relationships between NNI and N_(and) with relative yield(RY)were determined,and accurate N application schemes were developed for hybrids indica rice under PMT.The results indicated that high application rate of N-fertilizer significantly increased the concentrations of shoot DM and N in aboveground organs during the observed stages in the two cultivars for two years(P<0.05).The N_(c) dilution model of hybrid indica cultivars was N_(c)=4.02 DM^(-0.42)(R^(2)=0.97)combining the two cultivars under PMT.Root-mean-square error and normalized root-mean-square error of the curve verification were 0.23 and 10.61%,respectively.The NNI and Nand ranged from 0.58 to 1.31 and 109 to–55 kg ha^(-1),respectively,in the two cultivars for all N treatments.NNI showed a linear relationship with Nand during the entire growth stage(0.53<R^(2)<0.99,P<0.01).In addition,NNI showed a linear-plateau relationship with RY(0.73<R<0.92,P<0.01)throughout the observed stages.These results suggest that the models can accurately diagnose the N-nutrition status and support effective N-fertilizer management in real-time for hybrid indica rice under PMT.
文摘Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Changbai Mountains, Northeast China. Amounts of total nitrogen, anunonium and NRA in soils of virgin broad-leaved/Korean pine forest which is in climax were higher than those of secondary birch forests those are in succession Stage. The amount of nitrate was in the other hand. In climax, dominance trees species are tolerant mesophytic trees such as Pinus Koraiensis, Tilia amurensis, Acer mono and also Fraxinus mandshurica, they are all ammonium + nitrate adapted species, but they show a preference for the anunonium rather than those of the pioneer trees species in secondary birch forest, such as Populus davidiava and Betula platyphylla. Because they have more ammonium in their leaves and roots, especially Pinus koraiensis. Populus davidvana and Betula plaaphlla are intolerant trees, amounts of nitrate and total nitrogen is higher in their leaves and roots and also NRA in their leaves, so they preference for the nitrate rather than the others.In secondary birch forest, the regeneration trees species adapt their nitroggn nutrient to the variation of nitrogen nutrient situation in soil, finally they could survival well and the secondary birch forest would succession to climax. In climax, dominance trees species adapt their Nitrogen nutrient to the situation in soil and there are not strong competition in nitrogen nutrient among them, so they can coexist well and keep the climax as stable vegetation.
基金supported by National Natural Science Foundation of China (No: 30671664)
文摘The greenness (SPAD) of uneven-aged leaves of dominant species in the Castanopsis carlessi forest at different altitude gradients in Lingshishan National Forest Park, Fujian Province, China were measured by using portable chlorophyll meter SPAD-502. In addition, the correlation between SPAD value and the concentration of chlorophyll and foliar nitrogen was also investigated. Significant variations in SPAD values were found between the uneven-aged leaves of different dominant species and different altitude gradients. Regression analysis showed that SPAD value was significantly correlated with the concentration of chlorophyll and the content of foliar nitrogen, indicating that SPAD value could be indicators for foliar chlorophyll and nitrogen. It is suggested that SPAD meter is a useful tool for forest assessments in decision-making and operational nutrient management programs.
基金Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology,SOA (No.07EMC08)the Director's Foundation of the Beihai Monitoring Center (No.005EMC16)Chinese Academy of Sciences (No.KZCX2-207).
文摘In recent years, natural environment of the Jiaozhou Bay has been changed largely by fast developing industry and agriculture of the cities around, from which wastewaters were generated. The size of the bay has been continuously shrunk with reduced river flows, resulting in serious contamination to the marine lives in the bay. After analyzing the basic historical data, the authors put forward a suggestion of how to protect the bay ecology for sustaining the resources in the Jiaozhou Bay.
基金National Natural Sciences Foundation of China,No.41130748No.41101162Basic Research Work of Central Scientific Research Institution for Public Welfare,No.202-18
文摘The Bohai Rim region is one the most important bases for commodity grain production in China. With the rapid pace of agricultural industrialization, nitrogenous fertilizer has been used at an ever increasing rate, which resulted in the trace of accumulative nitrogen in the soil and caused serious environmental problems. In this study we made use of the farmland nitrogen balance model to assess the spatial difference of farmland nitrogen nutrient budget in the Bohai Rim region in 2008 with the assistance of GIS. Our results indicated that: 1) Farmland in this region has a nitrogen surplus totaling 5.0822 million tons, or an average of 288.54 kg/ha. 2) In the Bohai Rim region, farmland nitrogen input and farmland nitrogen budget both show a spatial differentiation. Major grain-producing areas have a higher nitrogen input than that of the grazing-farming areas. The main sources of nitrogen input include chemical fertilizer, organic fertilizer, deposition from atmospheric drying and wetting, and biological fixation, which account for 79.47%, 9.53%, 4.62%, and 3.58% of the total input, respectively. Therefore, chemical fertilizer is the predominant source of nitrogen input to farmland. 3) A total of 3.3398 million tons of nitrogen were output from the farmland via harvested crops and it accounts for 52.36% of the total nitrogen output from farmland in this region. On average, the amount of nitrogen output from unit farmland is equal to 176.65kg/ha. This study has shed light on farmland nitrogen budget and its spatial variation in the study area, may provide scientific evidences for rationalizing the use of chemical fertilizer and managing agricultural operation on the regional scale and is also valuable for improving the economic and ecological efficiency of fertilizer use at the regional scale.
基金the National Key Research and Development Project of China(No.2016YFD0200800)the National Natural Science Foundation of China(No.41571226).
文摘In order to reveal the mechanism of silicon(Si)fertilizer in improving nitrogen(N)and phosphorus(P)nutrient availability in paddy soil,we designed a series of soil culture experiments by combining application of varying Si fertilizer concentrations with fixed N and P fertilizer concentrations.Following the recommendations of fertilizer manufacturers and local farmers,we applied Si in concentrations of 0,5.2,10.4,15.6,and 20.8μg/kg.At each concentration of added Si,the availability of soil N and P nutrients,soil microbial activity,numbers of ammonia-oxidizing bacteria and P-decomposing bacteria which means that the organic P is decomposed into inorganic nutrients which can be absorbed and utilized by plants,and urease and phosphatase activity first increased,and then decreased,as Si was added to the soil.These indicators reached their highest levels with a Si application rate of 15.6μg/kg,showing values respectively 19.78%,105.09%,8.34%,73.12%,130.36%,28.12%,and 20.15%higher than those of the controls.Appropriate Si application(10.4 to 15.6µg/kg)could significantly increase the richness of the soil microbial community involved in cycling of N and P nutrients in the soil.When the Si application rate was 15.6μg/kg,parameters for characterizing microbial abundance such as sequence numbers,operational taxonomic unit(OTU)number,and correlation indices of microbial community richness such as Chao1 index,the adaptive coherence estimator(ACE)index,Shannon index,and Simpson index all reached maximum values,with amounts increased by 14.46%,10.01%,23.80%,30.54%,0.18%,and 2.64%,respectively,compared with the control group.There is also a good correlation between N and P mineralization and addition of Si fertilizer.The correlation coefficients between the ratio of available P/total P(AP/TP)and the number of ammonia-oxidizing bacteria,AP/TP and acid phosphatase activity(AcPA),AP/TP and the Shannon index,the ratio of available N/total amount of N(AN/TN)and the number of ammoniated bacteria,and AN/TN and AcPA were 0.9290,0.9508,0.9202,0.9140,and 0.9366,respectively.In summary,these results revealed that enhancement of soil microbial community structure diversity and soil microbial activity by appropriate application of Si is the key ecological mechanism by which application of Si fertilizer improves N and P nutrient availability.
基金the National Natural Science Foundation of China (U1301212)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15030202)
文摘Improving crop nutrient ef ficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements,among them,nitrogen(N) and phosphorus(P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity,and thereby have become high priority targets for improving nutrient ef ficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore,root architecture,the 3-dimensional con figuration of the plant's root system in the soil,is of great importance for improving crop nutrient ef ficiency. Furthermore,the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria,are additional important strategies to enhance nutrient acquisition. In this review,we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses,through gene or QTL regulation,which results in enhanced nutrient acquisition.
基金supported by the National Natural Science Foundation of China (Nos. 41230744, 51279194, 41271355, 41325001)
文摘Excessive nitrogen(N) and phosphorus(P) loading of aquatic ecosystems is a leading cause of eutrophication and harmful algal blooms worldwide, and reducing nutrient levels in water has been a primary management objective. To provide a rational protection strategy and predict future trends of eutrophication in eutrophic lakes, we need to understand the relationships between nutrient ratios and nutrient limitations. We conducted a set of outdoor bioassays at the shore of Lake Taihu. It showed that N only additions induced phytoplankton growth but adding only P did not. Combined N plus P additions promoted higher phytoplankton biomass than N only additions, which suggested that both N and P were deficient for maximum phytoplankton growth in this lake(TN:TP = 18.9). When nutrients are present at less than 7.75–13.95 mg/L TN and 0.41–0.74 mg/L TP, the deficiency of either N or P or both limits the growth of phytoplankton. N limitation then takes place when the TN:TP ratio is less than 21.5–24.7(TDN:TDP was 34.2–44.3), and P limitation occurs above this. Therefore, according to this ratio, controlling N when N limitation exists and controlling P when P deficiency is present will prevent algal blooms effectively in the short term. But for the long term, a persistent dual nutrient(N and P) management strategy is necessary.