The application of nitrogen(N) fertilizer to increase crop yields has a significant influence on soil methane(CH_4) and nitrous oxide(N_2O) emission/uptake.A meta-analysis was carried out on the effect of N appl...The application of nitrogen(N) fertilizer to increase crop yields has a significant influence on soil methane(CH_4) and nitrous oxide(N_2O) emission/uptake.A meta-analysis was carried out on the effect of N application on(i) CH_4 emissions in rice paddies,(ii) CH_4 uptake in upland fields and(iii) N_2O emissions.The responses of CH_4 emissions to N application in rice paddies were highly variable and overall no effects were found.CH_4 emissions were stimulated at low N application rates(〈100 kg N ha^(-1)) but inhibited at high N rates(〉200 kg N ha^(-1)) as compared to no N fertilizer(control).The response of CH_4 uptake to N application in upland fields was 15%lower than control,with a mean CH_4 uptake factor of-0.001 kg CH_4-C kg^(-1) N.The mean N_2O emission factors were 1.00 and 0.94%for maize(Zea mays) and wheat(Triticum aestivum),respectively,but significantly lower for the rice(Oryza sativa)(0.51%).Compared with controls,N addition overall increased global warming potential of CH_4 and N_2O emissions by 78%.Our result revealed that response of CH_4 emission to N input might depend on the CH_4concentration in rice paddy.The critical factors that affected CH_4 uptake and N_2O emission were N fertilizer application rate and the controls of CH_4 uptake and N_2O emission.The influences of application times,cropping systems and measurement frequency should all be considered when assessing CH_4 and N_2O emissions/uptake induced by N fertilizer.展开更多
Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practice...Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practices. The aim of this study was to evaluate the fate of N fertilizers applied to acidic red soil(Ferralic Cambisol) after 19 years of mineral(synthetic) and manure fertilizer treatments under a cropping system with wheat-maize rotations. Five field treatments were examined: control(CK), chemical nitrogen and potash fertilizer(NK), chemical nitrogen and phosphorus fertilizer(NP), chemical nitrogen, phosphorus and potash fertilizer(NPK) and the NPK with manure(NPKM, 70% N from manure). Based on the soil total N storage change in 0–100 cm depth, ammonia(NH_3) volatilization, nitrous oxide(N_2O) emission, N plant uptake, and the potential N leaching loss were estimated using a mass balance approach. In contrast to the NPKM, all mineral fertilizer treatments(NK, NP and NPK) showed increased nitrate(NO_3~–) concentration with increasing soil depth, indicating higher leaching potential. However, total NH_3 volatilization loss was much higher in the NPKM(19.7%) than other mineral fertilizer treatments(≤4.2%). The N_2O emissions were generally low(0.2–0.9%, the highest from the NPKM). Total gaseous loss accounted for 1.7, 3.3, 5.1, and 21.9% for NK, NP, NPK, and NPKM treatments, respectively. Estimated N leaching loss from the NPKM was only about 5% of the losses from mineral fertilizer treatments. All data demonstrated that manure incorporation improved soil productivity, increased yield, and reduced potential leaching, but with significantly higher NH_3 volatilization, which could be reduced by improving the application method. This study confirms that manure incorporationis an essential strategy in N fertilization management in upland red soil cropping system.展开更多
In this study,a model is developed to simulate the dynamics of an internal combustion engine,and it is calibrated and validated against reliable experimental data,making it a tool that can effectively be adopted to co...In this study,a model is developed to simulate the dynamics of an internal combustion engine,and it is calibrated and validated against reliable experimental data,making it a tool that can effectively be adopted to conduct emission predictions.In this work,the Ricardo WAVE software is applied to the simulation of a particular marine diesel engine,a four-stroke engine used in the maritime field.Results from the bench tests are used for the calibration of the model.Finally,the calibration of the model and its validation with full-scale data measured at sea are presented.The prediction includes not only the classic engine operating parameters for a comparison with surveys but also an estimate of nitrogen oxide emissions,which are compared with similar results obtained with emission factors.The calibration of the model made it possible to obtain an overlap between the simulation results and real data with an average error of approximately 7%on power,torque,and consumption.The model provides encouraging results,suggesting further applications,such as in the study on transient conditions,coupling of the engine model with the ship model for a complete simulation of the operating conditions,and optimization studies on consumption and emissions.The availability of the emission data during the sea trial and validated simulation results are the strengths and novelties of this work.展开更多
This study presents the use of a new chemical reactor network(CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dyna...This study presents the use of a new chemical reactor network(CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dynamics(CFD) combustion analysis with two injectors of CH4-air mixture. The injectors of CH4-air mixture have different lean equivalence ratio, and they control fuel flow to stabilize combustion and adjust combustor's equivalence ratio. Non-uniform injector is applied to improve the burning process of the turbine combustor. The results of the new CRN for NOx prediction in the gas turbine combustor show very good agreement with the experimental data from Korea Electric Power Research Institute.展开更多
A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hy...A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.展开更多
基金financed by the Chinese Academy of Sciences for Strategic Priority Research Program(XDA05050602)the Key Technologies R&D Program of China during the 12th Five-Year Plan period of China(2012BAD14B01-1)
文摘The application of nitrogen(N) fertilizer to increase crop yields has a significant influence on soil methane(CH_4) and nitrous oxide(N_2O) emission/uptake.A meta-analysis was carried out on the effect of N application on(i) CH_4 emissions in rice paddies,(ii) CH_4 uptake in upland fields and(iii) N_2O emissions.The responses of CH_4 emissions to N application in rice paddies were highly variable and overall no effects were found.CH_4 emissions were stimulated at low N application rates(〈100 kg N ha^(-1)) but inhibited at high N rates(〉200 kg N ha^(-1)) as compared to no N fertilizer(control).The response of CH_4 uptake to N application in upland fields was 15%lower than control,with a mean CH_4 uptake factor of-0.001 kg CH_4-C kg^(-1) N.The mean N_2O emission factors were 1.00 and 0.94%for maize(Zea mays) and wheat(Triticum aestivum),respectively,but significantly lower for the rice(Oryza sativa)(0.51%).Compared with controls,N addition overall increased global warming potential of CH_4 and N_2O emissions by 78%.Our result revealed that response of CH_4 emission to N input might depend on the CH_4concentration in rice paddy.The critical factors that affected CH_4 uptake and N_2O emission were N fertilizer application rate and the controls of CH_4 uptake and N_2O emission.The influences of application times,cropping systems and measurement frequency should all be considered when assessing CH_4 and N_2O emissions/uptake induced by N fertilizer.
基金supported by the National Key Research and Development Program of China(2016YFD0200301)the open fund of Key Laboratory of Non-point Source Pollution Control,Ministry of Agriculture,China(20130104)the Key Technologies R&D Program of China during the 12th Five-year Plan period(2012BAD14B04)
文摘Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practices. The aim of this study was to evaluate the fate of N fertilizers applied to acidic red soil(Ferralic Cambisol) after 19 years of mineral(synthetic) and manure fertilizer treatments under a cropping system with wheat-maize rotations. Five field treatments were examined: control(CK), chemical nitrogen and potash fertilizer(NK), chemical nitrogen and phosphorus fertilizer(NP), chemical nitrogen, phosphorus and potash fertilizer(NPK) and the NPK with manure(NPKM, 70% N from manure). Based on the soil total N storage change in 0–100 cm depth, ammonia(NH_3) volatilization, nitrous oxide(N_2O) emission, N plant uptake, and the potential N leaching loss were estimated using a mass balance approach. In contrast to the NPKM, all mineral fertilizer treatments(NK, NP and NPK) showed increased nitrate(NO_3~–) concentration with increasing soil depth, indicating higher leaching potential. However, total NH_3 volatilization loss was much higher in the NPKM(19.7%) than other mineral fertilizer treatments(≤4.2%). The N_2O emissions were generally low(0.2–0.9%, the highest from the NPKM). Total gaseous loss accounted for 1.7, 3.3, 5.1, and 21.9% for NK, NP, NPK, and NPKM treatments, respectively. Estimated N leaching loss from the NPKM was only about 5% of the losses from mineral fertilizer treatments. All data demonstrated that manure incorporation improved soil productivity, increased yield, and reduced potential leaching, but with significantly higher NH_3 volatilization, which could be reduced by improving the application method. This study confirms that manure incorporationis an essential strategy in N fertilization management in upland red soil cropping system.
基金Open access funding provided by Universita degli Studi di Napoli Federico II within the CRUI-CARE Agreement.
文摘In this study,a model is developed to simulate the dynamics of an internal combustion engine,and it is calibrated and validated against reliable experimental data,making it a tool that can effectively be adopted to conduct emission predictions.In this work,the Ricardo WAVE software is applied to the simulation of a particular marine diesel engine,a four-stroke engine used in the maritime field.Results from the bench tests are used for the calibration of the model.Finally,the calibration of the model and its validation with full-scale data measured at sea are presented.The prediction includes not only the classic engine operating parameters for a comparison with surveys but also an estimate of nitrogen oxide emissions,which are compared with similar results obtained with emission factors.The calibration of the model made it possible to obtain an overlap between the simulation results and real data with an average error of approximately 7%on power,torque,and consumption.The model provides encouraging results,suggesting further applications,such as in the study on transient conditions,coupling of the engine model with the ship model for a complete simulation of the operating conditions,and optimization studies on consumption and emissions.The availability of the emission data during the sea trial and validated simulation results are the strengths and novelties of this work.
基金supported by Research Program supported by Konkuk University, Korea, 2010
文摘This study presents the use of a new chemical reactor network(CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dynamics(CFD) combustion analysis with two injectors of CH4-air mixture. The injectors of CH4-air mixture have different lean equivalence ratio, and they control fuel flow to stabilize combustion and adjust combustor's equivalence ratio. Non-uniform injector is applied to improve the burning process of the turbine combustor. The results of the new CRN for NOx prediction in the gas turbine combustor show very good agreement with the experimental data from Korea Electric Power Research Institute.
基金supported by the Natural Sciences Foundation of China(Nos.91544232&51408015)the Ministry of Environmental Protection Special Funds for Scientific Research on Public Causes(No.201409006)+4 种基金the Beijing municipal science and technology plan projects(No.Z131100001113029)the 13th graduate students of science and technology fund of Beijing University of Technology(ykj-2014-11484)the projects supported by Beijing Municipal Commission of Science and Technology(No.Z141100001014002)Beijing Municipal Commission of Education(No.PXM2016_014204_001029)National Science and Technology Support Project of China(No.2014BAC23B02)
文摘A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.