Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after th...Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after the introduction of BiOI particles into La(OH)3 nanorods.The BiOI@La(OH)3 composites were applied for visible light photocatalytic oxidization of NO in air and exhibited an enhanced activity compared with BiOI and pure La(OH)3 nanorods.The results show that the energy levels between the La(OH)3 and BiOI phases matched well with each other,thus forming a heterojunctioned BiOI@La(OH)3 structure.This band structure matching could promote the separation and transfer of photoinduced electron-hole pairs at the interface,resulting in enhanced photocatalytic performance under visible light irradiation.The photocatalytic performance of BiOI@La(OH)3 is shown to be dependent on the mass ratio of BiOI to La(OH)3.The highest photocatalytic performance can be achieved when the mass ratio of BiOI to La(OH)3 is controlled at 1.5.A further increase of the mass ratio of BiOI weakened the redox abilities of the photogenerated charge carriers.A new photocatalytic mechanism for BiOI@La(OH)3 heterostructures is proposed,which is directly related to the efficient separation of photogenerated charge carriers by the heterojunction.Importantly,the as-prepared BiOI@La(OH)3 heterostructures exhibited a high photochemical stability after multiple reaction runs.Our findings demonstrate that BiOI is an effective component for the formation of a heterostructure with the properties of a wide bandgap semiconductor,which is of great importance for extending the light absorption and photocatalytic activity of wide bandgap semiconductors into visible light region.展开更多
Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicoch...Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicochemical properties of the g-C3N4 were investigated by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,photoluminescence spectroscopy,diffuse-reflection spectroscopy,BET and BJH surface area characterization,and elemental analysis.The carbon content was found to have self-doped into the g-C3N4 matrix during the thermal polymerization of thiourea and ethanol.CN-W and CN-E showed considerably enhanced visible-light photocatalytic activity,with NO removal percentages of 37.2%and 48.3%,respectively.Compared with pure g-C3N4,both the short and long lifetimes of the charge carriers in CN-W and CN-E were found to be prolonged.The mechanism of improved visible-light photocatalytic activity was deduced.The present work may provide a facile route to optimize the microstructure of g-C3N4photocatalysts for high-performance environmental and energy applications.展开更多
Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic...Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic activity compared to the pure BOC and N‐BOC samples. With 1.0wt% GO, 62% NO removal was obtained with N‐BOC‐GO. The factors enhancing the photocatalytic performance were the high electron‐withdrawing ability and high conductivity of GO and improved visible light‐harvesting ability of N‐BOC‐GO with a 3D hierarchical architecture due to the surface scattering and reflecting(SSR) effect. An effective charge transfer from N‐BOC to GO was demonstrated by the much weakened photoluminescene intensity of the N‐BOC‐GO composite. This work highlights the potential application of GO‐based photocatalysts in air purification.展开更多
In this paper,removal of nitrogen oxide(NO) is investigated in capacitive atmospheric pressure discharges driven by both radio-frequency(RF) and trapezoidal pulsed power with a onedimensional self-consistent fluid...In this paper,removal of nitrogen oxide(NO) is investigated in capacitive atmospheric pressure discharges driven by both radio-frequency(RF) and trapezoidal pulsed power with a onedimensional self-consistent fluid model.The results show that the number density of NO could be reduced significantly once a short pulse of low duty ratio is additionally applied to the RF power.It is found that the process of NO removal by the pulse-modulated RF discharge could be divided into three stages:the quick reaction stage,the NO removal stage,and the sustaining stage.Furthermore,the temporal evolution of particle densities is analyzed,and the key reactions in each stage are discovered.Finally,the influence on the removal efficiency of the voltage amplitude of the pulse and the RF voltage amplitude is investigated.展开更多
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties ...TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties of the catalysts were studied by N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy,H2 temperature-programmed reduction and Fourier transform infrared spectroscopy.TiO2/γ-Al2O3 supported In/Ag is a good catalyst for the reduction of NO to N2.It displayed high dispersion,large amounts of surface active components and high NO adsorption capacity,which gave good catalytic performance and stability for the reduction of NO with CO under lean burn conditions.The silver species stabilized and improved the dispersion of the indium species.The introduction of TiO2 into the γ-Al2O3 support promoted NO adsorption and improved the dispersion of the indium species and silver species.展开更多
CeO2‐ZrO2 (CeZr) and sulfated CeO2‐ZrO2 (S‐CeZr) catalysts were prepared for the selective catalytic reduction of NO with NH3. The CeZr catalysts exhibited higher activity at low temperatures (< 200°C) and ...CeO2‐ZrO2 (CeZr) and sulfated CeO2‐ZrO2 (S‐CeZr) catalysts were prepared for the selective catalytic reduction of NO with NH3. The CeZr catalysts exhibited higher activity at low temperatures (< 200°C) and lower activity at high temperatures (> 200 °C) than the S‐CeZr catalysts. The sulfation ofCeZr was studied in terms of surface acidity, redox properties and NO adsorption‐desorption bytemperature‐dependent experiments and in situ infrared spectroscopy. S‐CeZr displayed high concentrationsof acidic sites and increased surface acidities, but poor reducibility compared with CeZr.The high acidity of S‐CeZr was attributed to the presence of Br?nsted acid sites, arising mainly fromthe surface sulfates. Because the surface was covered with sulfate species, S‐CeZr showed lower NOadsorption and weaker oxidation ability than CeZr. The adsorption of NH3 on the Br?nsted acid sites restricted the reaction with NO at low temperatures, but the selective catalytic reduction cycle occurred easily at relatively low temperatures (150 °C), and the weakly bound nitrite was partially activated on the S‐CeZr catalyst at relatively high temperatures (300 °C). The catalytic mechanisms for the CeZr and S‐CeZr catalysts at 150 and 300 °C were also studied.展开更多
A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO ...A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.展开更多
Nitrous oxide(N_2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N_2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600 m L/min sequenc...Nitrous oxide(N_2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N_2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600 m L/min sequencing batch reactor(SBRL) and 1200 m L/min(SBRH).The nitrogen removal percentage was 89% in SBRLand 71% in SBRH, respectively. N_2O emission mainly occurred during the aerobic phase, and the N_2O emission factor was 10.1%in SBRLand 2.3% in SBRH, respectively. In all batch experiments, the N_2O emission potential was high in SBRLcompared with SBRH. In SBRL, with increasing aeration rates, the N_2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification(SND). By contrast, in SBRHthe N_2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N_2O emission during biological nitrogen removal.展开更多
基金supported by the National Key Research and Development Project (2016YFC0204702)the National Natural Science Foundation of China (51478070, 21501016, 51108487)+2 种基金the Innovative Research Team of Chongqing (CXTDG201602014)the Natural Science Foundation of Chongqing (cstc2016jcyjA0481)Youth Innovation Promotion Association of Chinese Academy of Sciences (2015316)~~
文摘Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after the introduction of BiOI particles into La(OH)3 nanorods.The BiOI@La(OH)3 composites were applied for visible light photocatalytic oxidization of NO in air and exhibited an enhanced activity compared with BiOI and pure La(OH)3 nanorods.The results show that the energy levels between the La(OH)3 and BiOI phases matched well with each other,thus forming a heterojunctioned BiOI@La(OH)3 structure.This band structure matching could promote the separation and transfer of photoinduced electron-hole pairs at the interface,resulting in enhanced photocatalytic performance under visible light irradiation.The photocatalytic performance of BiOI@La(OH)3 is shown to be dependent on the mass ratio of BiOI to La(OH)3.The highest photocatalytic performance can be achieved when the mass ratio of BiOI to La(OH)3 is controlled at 1.5.A further increase of the mass ratio of BiOI weakened the redox abilities of the photogenerated charge carriers.A new photocatalytic mechanism for BiOI@La(OH)3 heterostructures is proposed,which is directly related to the efficient separation of photogenerated charge carriers by the heterojunction.Importantly,the as-prepared BiOI@La(OH)3 heterostructures exhibited a high photochemical stability after multiple reaction runs.Our findings demonstrate that BiOI is an effective component for the formation of a heterostructure with the properties of a wide bandgap semiconductor,which is of great importance for extending the light absorption and photocatalytic activity of wide bandgap semiconductors into visible light region.
基金supported by the China Postdoctoral Science Foundation Funded Project (2016M592642)Project from Chongqing Education Commission (KJ1600305)+3 种基金Chongqing Basic Science and Advanced Technology Research (cstc2016jcyjAX0003)the Start-up Foundation for Doctors of Chongqing Normal University (15XLB010, 15XLB014)the National Natural Science Foundation of China (51478070, 51108487)the Innovative Research Team of Chongqing (CXTDG201602014)~~
文摘Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicochemical properties of the g-C3N4 were investigated by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,photoluminescence spectroscopy,diffuse-reflection spectroscopy,BET and BJH surface area characterization,and elemental analysis.The carbon content was found to have self-doped into the g-C3N4 matrix during the thermal polymerization of thiourea and ethanol.CN-W and CN-E showed considerably enhanced visible-light photocatalytic activity,with NO removal percentages of 37.2%and 48.3%,respectively.Compared with pure g-C3N4,both the short and long lifetimes of the charge carriers in CN-W and CN-E were found to be prolonged.The mechanism of improved visible-light photocatalytic activity was deduced.The present work may provide a facile route to optimize the microstructure of g-C3N4photocatalysts for high-performance environmental and energy applications.
基金supported by the National Natural Science Foundation of China(21277097)the Key Projects in the National Science&Technology Pillar Program during the 12th Five-Year Plan Period(2012BAJ21B01)~~
文摘Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic activity compared to the pure BOC and N‐BOC samples. With 1.0wt% GO, 62% NO removal was obtained with N‐BOC‐GO. The factors enhancing the photocatalytic performance were the high electron‐withdrawing ability and high conductivity of GO and improved visible light‐harvesting ability of N‐BOC‐GO with a 3D hierarchical architecture due to the surface scattering and reflecting(SSR) effect. An effective charge transfer from N‐BOC to GO was demonstrated by the much weakened photoluminescene intensity of the N‐BOC‐GO composite. This work highlights the potential application of GO‐based photocatalysts in air purification.
基金supported by National Natural Science Foundation of China under Grant Nos.11405022,11475039, 11675095'Dalian High Level Talent Innovation Support Project' under Grant Nos.2015R050 and 2016RQ020
文摘In this paper,removal of nitrogen oxide(NO) is investigated in capacitive atmospheric pressure discharges driven by both radio-frequency(RF) and trapezoidal pulsed power with a onedimensional self-consistent fluid model.The results show that the number density of NO could be reduced significantly once a short pulse of low duty ratio is additionally applied to the RF power.It is found that the process of NO removal by the pulse-modulated RF discharge could be divided into three stages:the quick reaction stage,the NO removal stage,and the sustaining stage.Furthermore,the temporal evolution of particle densities is analyzed,and the key reactions in each stage are discovered.Finally,the influence on the removal efficiency of the voltage amplitude of the pulse and the RF voltage amplitude is investigated.
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金supported by the National Science & Technology Pillar Program(2012BAF03B02)National Natural Science Foundation of China(21101085,U1162203)+3 种基金Natural Science Foundation of Liaoning Province(2015020196)Doctoral Fund of Shandong Province(BS2015HZ003)Fushun Science & Technology Program(FSKJHT 201423)Liaoning Excellent Talents Program in University(LJQ2012031)~~
文摘TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties of the catalysts were studied by N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy,H2 temperature-programmed reduction and Fourier transform infrared spectroscopy.TiO2/γ-Al2O3 supported In/Ag is a good catalyst for the reduction of NO to N2.It displayed high dispersion,large amounts of surface active components and high NO adsorption capacity,which gave good catalytic performance and stability for the reduction of NO with CO under lean burn conditions.The silver species stabilized and improved the dispersion of the indium species.The introduction of TiO2 into the γ-Al2O3 support promoted NO adsorption and improved the dispersion of the indium species and silver species.
基金supported by the Science Fund for Yong Scholars at Changchun University of Science and Technology(XQNJJ-2014-15)~~
文摘CeO2‐ZrO2 (CeZr) and sulfated CeO2‐ZrO2 (S‐CeZr) catalysts were prepared for the selective catalytic reduction of NO with NH3. The CeZr catalysts exhibited higher activity at low temperatures (< 200°C) and lower activity at high temperatures (> 200 °C) than the S‐CeZr catalysts. The sulfation ofCeZr was studied in terms of surface acidity, redox properties and NO adsorption‐desorption bytemperature‐dependent experiments and in situ infrared spectroscopy. S‐CeZr displayed high concentrationsof acidic sites and increased surface acidities, but poor reducibility compared with CeZr.The high acidity of S‐CeZr was attributed to the presence of Br?nsted acid sites, arising mainly fromthe surface sulfates. Because the surface was covered with sulfate species, S‐CeZr showed lower NOadsorption and weaker oxidation ability than CeZr. The adsorption of NH3 on the Br?nsted acid sites restricted the reaction with NO at low temperatures, but the selective catalytic reduction cycle occurred easily at relatively low temperatures (150 °C), and the weakly bound nitrite was partially activated on the S‐CeZr catalyst at relatively high temperatures (300 °C). The catalytic mechanisms for the CeZr and S‐CeZr catalysts at 150 and 300 °C were also studied.
基金Project supported by the National Key Research and Development Program of China(2016YFC0205500)National Natural Science Foundation of China(51772149)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.
基金supported by the Shenzhen Overseas High-Level Talents Innovation Funds Peacock Plan Project (No. KQCX20120814155347053)the National Natural Science Foundation of China (No. 51108242)
文摘Nitrous oxide(N_2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N_2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600 m L/min sequencing batch reactor(SBRL) and 1200 m L/min(SBRH).The nitrogen removal percentage was 89% in SBRLand 71% in SBRH, respectively. N_2O emission mainly occurred during the aerobic phase, and the N_2O emission factor was 10.1%in SBRLand 2.3% in SBRH, respectively. In all batch experiments, the N_2O emission potential was high in SBRLcompared with SBRH. In SBRL, with increasing aeration rates, the N_2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification(SND). By contrast, in SBRHthe N_2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N_2O emission during biological nitrogen removal.