Nitrogen oxides(NO_2 and NO)are absorbed by tributyl phosphorate(TBP)to fom a new complex mixture of TBP-NO_x. which is used as a selective oddizing agent to oxidize benzylalcohols to corresponding sldehydes or ketone...Nitrogen oxides(NO_2 and NO)are absorbed by tributyl phosphorate(TBP)to fom a new complex mixture of TBP-NO_x. which is used as a selective oddizing agent to oxidize benzylalcohols to corresponding sldehydes or ketones In high yield. In the reaction process, nitrogen oxides are llberated mildly and mainly reduced to nitrogen, while tributyl phosphorate is recovered end recycled.展开更多
In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides w...In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides with two different doses,2×10 15 and 3×10 15 cm -2 ,respectively.The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source.Despite the small difference between the doses of nitrogen implantation,the nitrogen-implanted 2×10 15 cm -2 BOX has a much higher hardness than the control sample (i.e.the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5×104rad(Si),whereas the nitrogen-implanted 3×10 15 cm -2 BOX has a lower hardness than uhe control sample.However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5×104 to 5×105rad (Si)).The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed.In addition,the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.展开更多
The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on ...The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on the performance of these substances during soot combustion were subsequently investigated.Under O_2,the 0.3Ag/Co_(0.93)Ce_(0.07) catalyst resulted in the lowest ignition temperature,T_(10),of197 ℃,while the minimum light-off temperature was obtained from both 0.2Ag/Co_(0.93)Ce_(0.07) and0.3Ag/Co_(0.93)Ce_(0.07) in the NO_x atmosphere.These materials were also characterized by various techniques,including H_2,soot and NO_x temperature programmed reduction,X-ray diffraction,and electron paramagnetic resonance,Raman,X-ray photoelectron,and Fourier transform infrared spectroscopic analyses.The results demonstrated that silver significantly alters the catalytic behavior under both O_2 and NO_x,even though the lattice structure of the mixed oxide is not affected.Surface silver oxides generated under the O_2 atmosphere favor soot combustion by participating in the redox cycles between soot and the silver oxide,whereas the AgNO_3 that forms in a NO_x-rich atmosphere facilitates soot abatement at a lower temperature.The inferior activity of AgNO_3 relative to that of Ag_2O results in the different catalytic performance in the presence of NO_x or O_2.展开更多
A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized ...A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized via a one‐pot hydrothermal crystallization method. The physicochemical properties of the catalysts were characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption‐desorption measurements, X‐ray diffraction, 27 Al magic angle spinning nuclear magnetic resonance, diffuse reflectance ultraviolet‐visible spectroscopy, inductively coupled plasma‐atomic emission spectroscopy, X‐ray photoelectron spectroscopy, temperature‐programmed reduction measurements, and electron paramagnetic resonance analysis. The formation of micro‐mesopores in the Cu‐SAPO‐34 catalysts decreases diffusion resistance and greatly improves the accessibility of reactants to catalytic active sites. The main active sites for NH3‐SCR reaction are the isolated Cu^2+ species displaced into the ellipsoidal cavity of the Cu‐SAPO‐34 catalysts.展开更多
Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was cre...Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was created directly in the exhaust gas (direct application), and in the an other case, ozone produced by DBD was injected into the exhaust gas (indirect application). A comparative study between such direct and indirect applications of DBD plasma was made in terms of the NOx removal efficiency and the energy consumption. The NO2 content in the exhaust gas was changed by the voltage applied to the DBD device (for direct application) or by the amount of ozone added to the exhaust gas (for indirect application). In both cases, NO was easily oxidized to NO2, and the change in NO2 content largely affected the NOx removal performance of the catalytic reactor placed downstream, where both NO and NO2 were reduced to N2 in the presence of ammonia as the reducing agent. The experiments were primarily concerned with the effect of reaction temperature on the catalytic NOx reduction at various NO2 contents. The direct and indirect applications of DBD were found to remarkably improve the catalytic NOx reduction, especially at low temperatures.展开更多
A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc....A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc. Scoria was able to act not only as dielectricpellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia.Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 ℃to 200 ℃, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.展开更多
An electric discharge plasma reactor combined with a catalytic reactor wasstudied for removing nitrogen oxides. To understand the combined process thoroughly, dischargeplasma and catalytic process were separately stud...An electric discharge plasma reactor combined with a catalytic reactor wasstudied for removing nitrogen oxides. To understand the combined process thoroughly, dischargeplasma and catalytic process were separately studied first, and then the two processes were combinedfor the study. The plasma reactor was able to oxidize NO to NO_2 well although the oxidation ratedecreased with temperature. The plasma reactor alone did not reduce the NO_x (NO+NO_2) leveleffectively, but the increase in the ratio of NO_2 to NO as a result of plasma discharge led to theenhancement of NO_x removal efficiency even at lower temperatures over the catalyst surface(V_2O_5-WO_3/TiO_2). At a gas temperature of 100℃, the NO_x removal efficiency obtained using thecombined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/l.展开更多
The potential of using denitrifying and nitrifying concurrent biofilters for the removal of nitrogen oxides from synthetic gas streams was studied under the condition of high oxygen concentration. It was found that ...The potential of using denitrifying and nitrifying concurrent biofilters for the removal of nitrogen oxides from synthetic gas streams was studied under the condition of high oxygen concentration. It was found that more than 85% of nitric oxide was removed from synthetic combustion gas-streams which contained 20% oxygen and 350 μL/L NO, with a residence time of 60 seconds. In the process, it was found that the existing of oxygen showed no evident negative effect on the efficiency of nitrogen removal.展开更多
This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being...This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.展开更多
Total dissolved nitrogen(TDN) is an important parameter for assessing the nutrient cycling and status of natural waters.The accurate determination of TDN in natural waters is essential for assessing its contents and d...Total dissolved nitrogen(TDN) is an important parameter for assessing the nutrient cycling and status of natural waters.The accurate determination of TDN in natural waters is essential for assessing its contents and distinguishing different forms of nitrogen in the water.The TDN in various systems has been largely documented,and the concentrations of TDN are usually obtained using high-temperature catalytic(HTC) or persulfate oxidation(PO).However,the accuracy of these methods and their suitability for all types of natural waters are still unclear.To explore both methods in-depth,assorted samples were tested,including eight solutions composed of nitrogen-containing compounds(3 dissolved inorganic nitrogen fractions:NO_(3)^(-),NO_(2)^(-)and NH_(4)^(+);5 organic compounds:EDTA-2Na,vitamin B1,vitamin B12,amino acids,and urea) and 105 natural waters which were collected from an open ocean(Northwest Pacific Ocean,28),a marginal sea(Yellow Sea,34),an estuary(Huanghe River mouth,31),rivers(Huanghe River,4;Licun River,4),and precipitations(4 samples).The results showed that heterocycles and molecular dimensions had certain effects on the oxidation efficiency of the PO method but had little effect on HTC.There was no significant difference between the two methods for natural waters,but HTC was more suitable for deep-sea samples with low TDN concentrations(less than 10 μmol/L) and low organic activity.Overall,HTC has a relatively simple measurement process,a high degree of automation,and low error.Therefore,HTC can be recommended to determine the TDN of samples in freshwater and seawater.展开更多
We evaluate nitrogen oxides pollution in Takamatsu and Utazu area in Kagawa prefecture, Japan. Annually observations for nitrogen oxides (nitrogen dioxide;NO2, nitric oxide;NO) (1990-2007) were obtained from data base...We evaluate nitrogen oxides pollution in Takamatsu and Utazu area in Kagawa prefecture, Japan. Annually observations for nitrogen oxides (nitrogen dioxide;NO2, nitric oxide;NO) (1990-2007) were obtained from data base of Kagawa prefecture, Japan. Changes in NO2 and NO in Takamatsu and Utazu area were evaluated and compared. In 2007, NO2, NO and NO2 + NO (ppm) in Takamatsu area were higher than those in Utazu area. However, NO2 /NO + NO2 in Takamatsu area was lower than that in Utazu area. From 1990 to 2007, mean of NO2 in a day over the level of 0.06 ppm was 30 days in Takamatsu area and only one day in Utazu area. Mean of NO2, NO and NO2 + NO was significantly higher and NO2/NO + NO2 was lower in Takamatsu area than that in Utazu area. In addition, NO2, NO and NO2 + NO were negatively correlated and NO2/NO + NO2 was positively correlated with years (1990-2007) in Takamatsu area. The level of nitrogen oxides pollution in Utazu area was lower than Takamatsu area. Further observation is required for preventing nitrogen oxides pollution in Kagawa prefecture, Japan.展开更多
Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide...Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide(N_(2)O),a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide.Natural phytochemicals or forages containing phytochemicals have shown the potential to improve the efficiency of nitrogen(N)utilization and decrease N_(2)O emissions from the excreta of ruminants.Dietary inclusion of tannins can shift more of the excreted N to the feces,alter the urinary N composition and consequently reduce N_(2)O emissions from excreta.Essential oils or saponins could inhibit rumen ammonia production and decrease urinary N excretion.In grazed pastures,large amounts of glucosinolates or aucubin can be introduced into pasture soils when animals consume plants rich in these compounds and then excrete them or their metabolites in the urine or feces.If inhibitory compounds are excreted in the urine,they would be directly applied to the urine patch to reduce nitrification and subsequent N_(2)O emissions.The phytochemicals’role in sustainable ruminant production is undeniable,but much uncertainty remains.Inconsistency,transient effects,and adverse effects limit the effectiveness of these phytochemicals for reducing N losses.In this review,we will identify some current phytochemicals found in feed that have the potential to manipulate ruminant N excretion or mitigate N_(2)O production and deliberate the challenges and opportunities associated with using phytochemicals or forages rich in phytochemicals as dietary strategies for reducing N excretion and excreta-derived N_(2)O emissions.展开更多
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited...In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.展开更多
V-Pd/γ-Al2O3-TiO2 catalysts with different vanadium contents were prepared by a combined sol-gel and impregnation method. X-ray diffraction (XRD), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy ...V-Pd/γ-Al2O3-TiO2 catalysts with different vanadium contents were prepared by a combined sol-gel and impregnation method. X-ray diffraction (XRD), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS) and catalytic removal of ethanol, acetaldehyde and nitrogen oxides at low temperature (〈300 ?C) were used to assess the properties of the catalysts. The results showed that the sample with 1wt% vanadium exhibited an excellent catalytic performance for simultaneous removal of ethanol, acetaldehyde and nitrogen oxides. The conversions of ethanol, acetaldehyde and nitrogen oxides at 250 ?C were 100%, 74.4% and 98.7%, respectively. V-Pd/γ-Al2O3-TiO2 catalyst with 1 wt% vanadium showed the largest surface area and higher dispersion of vanadium oxide on the catalyst surface, and possessed a larger mole fraction of V4+ species and unique PdO species on the surface, which can be attributed to the strong synergistic effect among palladium, vanadium and the carriers. The higher activity of V-Pd/γ-Al2O3-TiO2 catalyst is related to the V4+ and Pd2+ species on the surface, which might be favorable for the formation of active sites.展开更多
Outdoor air quality, building materials, HVAC (Heating, Ventilation, Air Conditioning) systems and people activity are important factors in human exposition of polluted indoor air. The degree of signification varies...Outdoor air quality, building materials, HVAC (Heating, Ventilation, Air Conditioning) systems and people activity are important factors in human exposition of polluted indoor air. The degree of signification varies in dependence on pollution character and its sources. Buildings eliminate significantly people exposition of outdoor pollutants, but on the other hand, buildings are significant source of indoor pollution. The contamination of indoor air is largely from the use of gas for heating and cooking appliances. A comprehensive analysis of indoor air pollution by nitrogen oxides shows that the extent of indoor air pollution and consequent exposure varies as a result of many factors mainly the differing dislribution of appliances and their level of use. This study aims to formulate a mathematical model for the production of nitrogen oxides indoors. The physical processes that determine the concentrations of indoor nitrogen oxides as a function of outdoor concentrations, indoor emission rates and building characteristics have been mathematically described. The mathematical model developed has been parameterized for typical Slovak residences. The modeling of the occurrence of indoor nitrogen oxides and verification of the model is presented in this paper.展开更多
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was...To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.展开更多
The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and i...The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment.展开更多
Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The...Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.展开更多
The electrochemical methanol oxidation reaction(MOR) is of paramount importance for direct methanol fuel cell(DMFC) application, where efficient catalysts are required to facilitate the complicated multiple charge tra...The electrochemical methanol oxidation reaction(MOR) is of paramount importance for direct methanol fuel cell(DMFC) application, where efficient catalysts are required to facilitate the complicated multiple charge transfer process. The catalyst support not only determines the dispersion status of the catalysts particles, but also exerts great influence on the electronic structure of the catalysts, thereby altering its intrinsic activity. Herein, we demonstrated that nitrogen atoms, assisted by the pre-treatment of carbon matrix with oxidants, can be easily doped into carbon nanotubes at low temperature. The obtained nitrogen-doped carbon nanotubes can effectively improve the dispersion of the supported platinum nanoparticles and facilitate the MOR by modifying the electronic structure of platinum atoms,through catalyst-support interaction.展开更多
Effects of nitrogen fertilizer,soil moisture and temperature on methane oxidation in paddy soil were investigated under laboratory conditions. Addition of 0.05 g N kg-1 soil as NH4Cl strongly inhibited methane oxidati...Effects of nitrogen fertilizer,soil moisture and temperature on methane oxidation in paddy soil were investigated under laboratory conditions. Addition of 0.05 g N kg-1 soil as NH4Cl strongly inhibited methane oxidation and addition of the same rate of KCl also inhibited the oxidation but with more slight effect,suggesting that the inhibitory effect was partly caused by increase in osmotic potential in microorganism cell.Not only NH but also NO greatly affected methane oxidation.Urea did not affect methane oxidation in paddy soil in the first two days of incubation,but strong inhibitory effect was observed afterwards.Methane was oxidized in the treated soil with an optimum moisture of 280 g kg-1, and air-drying inhibited methane oxidation entirely.The optimum temperature of methane oxidation was about 30℃in paddy soil,while no methane oxidation was observed at 5℃or 50℃展开更多
文摘Nitrogen oxides(NO_2 and NO)are absorbed by tributyl phosphorate(TBP)to fom a new complex mixture of TBP-NO_x. which is used as a selective oddizing agent to oxidize benzylalcohols to corresponding sldehydes or ketones In high yield. In the reaction process, nitrogen oxides are llberated mildly and mainly reduced to nitrogen, while tributyl phosphorate is recovered end recycled.
文摘In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides with two different doses,2×10 15 and 3×10 15 cm -2 ,respectively.The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source.Despite the small difference between the doses of nitrogen implantation,the nitrogen-implanted 2×10 15 cm -2 BOX has a much higher hardness than the control sample (i.e.the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5×104rad(Si),whereas the nitrogen-implanted 3×10 15 cm -2 BOX has a lower hardness than uhe control sample.However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5×104 to 5×105rad (Si)).The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed.In addition,the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.
基金supported by the National Natural Science Foundation of China(21577088)~~
文摘The composite oxides xAg/Co_(0.93)Ce_(0.07)(x=Ag/(Co+Ce) molar ratio),intended for use as high performance catalytic materials,were successfully prepared via citric acid complexation.The effects of silver on the performance of these substances during soot combustion were subsequently investigated.Under O_2,the 0.3Ag/Co_(0.93)Ce_(0.07) catalyst resulted in the lowest ignition temperature,T_(10),of197 ℃,while the minimum light-off temperature was obtained from both 0.2Ag/Co_(0.93)Ce_(0.07) and0.3Ag/Co_(0.93)Ce_(0.07) in the NO_x atmosphere.These materials were also characterized by various techniques,including H_2,soot and NO_x temperature programmed reduction,X-ray diffraction,and electron paramagnetic resonance,Raman,X-ray photoelectron,and Fourier transform infrared spectroscopic analyses.The results demonstrated that silver significantly alters the catalytic behavior under both O_2 and NO_x,even though the lattice structure of the mixed oxide is not affected.Surface silver oxides generated under the O_2 atmosphere favor soot combustion by participating in the redox cycles between soot and the silver oxide,whereas the AgNO_3 that forms in a NO_x-rich atmosphere facilitates soot abatement at a lower temperature.The inferior activity of AgNO_3 relative to that of Ag_2O results in the different catalytic performance in the presence of NO_x or O_2.
基金supported by the National Natural Science Foundation of China(2137626121173270)+4 种基金the National High Technology Research and Development Program of China(863 Program2015AA034603)the Beijing Natural Science Foundation(2142027)the China University of Petroleum Fund(201300071100072462015QZDX04)~~
文摘A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized via a one‐pot hydrothermal crystallization method. The physicochemical properties of the catalysts were characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption‐desorption measurements, X‐ray diffraction, 27 Al magic angle spinning nuclear magnetic resonance, diffuse reflectance ultraviolet‐visible spectroscopy, inductively coupled plasma‐atomic emission spectroscopy, X‐ray photoelectron spectroscopy, temperature‐programmed reduction measurements, and electron paramagnetic resonance analysis. The formation of micro‐mesopores in the Cu‐SAPO‐34 catalysts decreases diffusion resistance and greatly improves the accessibility of reactants to catalytic active sites. The main active sites for NH3‐SCR reaction are the isolated Cu^2+ species displaced into the ellipsoidal cavity of the Cu‐SAPO‐34 catalysts.
文摘Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was created directly in the exhaust gas (direct application), and in the an other case, ozone produced by DBD was injected into the exhaust gas (indirect application). A comparative study between such direct and indirect applications of DBD plasma was made in terms of the NOx removal efficiency and the energy consumption. The NO2 content in the exhaust gas was changed by the voltage applied to the DBD device (for direct application) or by the amount of ozone added to the exhaust gas (for indirect application). In both cases, NO was easily oxidized to NO2, and the change in NO2 content largely affected the NOx removal performance of the catalytic reactor placed downstream, where both NO and NO2 were reduced to N2 in the presence of ammonia as the reducing agent. The experiments were primarily concerned with the effect of reaction temperature on the catalytic NOx reduction at various NO2 contents. The direct and indirect applications of DBD were found to remarkably improve the catalytic NOx reduction, especially at low temperatures.
基金The project supported by the Basic Research Program of the Korea Science & Engineering Foundation (KOSEF) (No. R05-2001-000-01247-0)
文摘A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc. Scoria was able to act not only as dielectricpellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia.Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 ℃to 200 ℃, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.
文摘An electric discharge plasma reactor combined with a catalytic reactor wasstudied for removing nitrogen oxides. To understand the combined process thoroughly, dischargeplasma and catalytic process were separately studied first, and then the two processes were combinedfor the study. The plasma reactor was able to oxidize NO to NO_2 well although the oxidation ratedecreased with temperature. The plasma reactor alone did not reduce the NO_x (NO+NO_2) leveleffectively, but the increase in the ratio of NO_2 to NO as a result of plasma discharge led to theenhancement of NO_x removal efficiency even at lower temperatures over the catalyst surface(V_2O_5-WO_3/TiO_2). At a gas temperature of 100℃, the NO_x removal efficiency obtained using thecombined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/l.
基金supported by the National Natural Science Foundation of China(Grants No.20277009)
文摘The potential of using denitrifying and nitrifying concurrent biofilters for the removal of nitrogen oxides from synthetic gas streams was studied under the condition of high oxygen concentration. It was found that more than 85% of nitric oxide was removed from synthetic combustion gas-streams which contained 20% oxygen and 350 μL/L NO, with a residence time of 60 seconds. In the process, it was found that the existing of oxygen showed no evident negative effect on the efficiency of nitrogen removal.
文摘This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.
基金The National Key Research and Development Project of China under contract No.2019YFC1407802the Fund of State Environmental Protection Key Laboratory of Coastal Ecosystem under contract No.202112+3 种基金the Open Fund of Key Laboratory of Marine Ecological Environment Science and EngineeringMinistry of Natural Resources under contract No.MESE-2019-06the National Natural Science Foundation of China under contract No.41876078the Shandong Provincial Natural Science Foundation of China under contract No.ZR2018MD016。
文摘Total dissolved nitrogen(TDN) is an important parameter for assessing the nutrient cycling and status of natural waters.The accurate determination of TDN in natural waters is essential for assessing its contents and distinguishing different forms of nitrogen in the water.The TDN in various systems has been largely documented,and the concentrations of TDN are usually obtained using high-temperature catalytic(HTC) or persulfate oxidation(PO).However,the accuracy of these methods and their suitability for all types of natural waters are still unclear.To explore both methods in-depth,assorted samples were tested,including eight solutions composed of nitrogen-containing compounds(3 dissolved inorganic nitrogen fractions:NO_(3)^(-),NO_(2)^(-)and NH_(4)^(+);5 organic compounds:EDTA-2Na,vitamin B1,vitamin B12,amino acids,and urea) and 105 natural waters which were collected from an open ocean(Northwest Pacific Ocean,28),a marginal sea(Yellow Sea,34),an estuary(Huanghe River mouth,31),rivers(Huanghe River,4;Licun River,4),and precipitations(4 samples).The results showed that heterocycles and molecular dimensions had certain effects on the oxidation efficiency of the PO method but had little effect on HTC.There was no significant difference between the two methods for natural waters,but HTC was more suitable for deep-sea samples with low TDN concentrations(less than 10 μmol/L) and low organic activity.Overall,HTC has a relatively simple measurement process,a high degree of automation,and low error.Therefore,HTC can be recommended to determine the TDN of samples in freshwater and seawater.
文摘We evaluate nitrogen oxides pollution in Takamatsu and Utazu area in Kagawa prefecture, Japan. Annually observations for nitrogen oxides (nitrogen dioxide;NO2, nitric oxide;NO) (1990-2007) were obtained from data base of Kagawa prefecture, Japan. Changes in NO2 and NO in Takamatsu and Utazu area were evaluated and compared. In 2007, NO2, NO and NO2 + NO (ppm) in Takamatsu area were higher than those in Utazu area. However, NO2 /NO + NO2 in Takamatsu area was lower than that in Utazu area. From 1990 to 2007, mean of NO2 in a day over the level of 0.06 ppm was 30 days in Takamatsu area and only one day in Utazu area. Mean of NO2, NO and NO2 + NO was significantly higher and NO2/NO + NO2 was lower in Takamatsu area than that in Utazu area. In addition, NO2, NO and NO2 + NO were negatively correlated and NO2/NO + NO2 was positively correlated with years (1990-2007) in Takamatsu area. The level of nitrogen oxides pollution in Utazu area was lower than Takamatsu area. Further observation is required for preventing nitrogen oxides pollution in Kagawa prefecture, Japan.
基金supported by Beijing Captial Agribusiness&Food Group Co.,Ltd.‘Integrated Innovation and Industrial Application of"Green Digital Intelligence"Technology in the Whole Dairy Industry Chain’(SNSPKJ2022)National Natural Science Foundation of China(32302767).
文摘Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide(N_(2)O),a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide.Natural phytochemicals or forages containing phytochemicals have shown the potential to improve the efficiency of nitrogen(N)utilization and decrease N_(2)O emissions from the excreta of ruminants.Dietary inclusion of tannins can shift more of the excreted N to the feces,alter the urinary N composition and consequently reduce N_(2)O emissions from excreta.Essential oils or saponins could inhibit rumen ammonia production and decrease urinary N excretion.In grazed pastures,large amounts of glucosinolates or aucubin can be introduced into pasture soils when animals consume plants rich in these compounds and then excrete them or their metabolites in the urine or feces.If inhibitory compounds are excreted in the urine,they would be directly applied to the urine patch to reduce nitrification and subsequent N_(2)O emissions.The phytochemicals’role in sustainable ruminant production is undeniable,but much uncertainty remains.Inconsistency,transient effects,and adverse effects limit the effectiveness of these phytochemicals for reducing N losses.In this review,we will identify some current phytochemicals found in feed that have the potential to manipulate ruminant N excretion or mitigate N_(2)O production and deliberate the challenges and opportunities associated with using phytochemicals or forages rich in phytochemicals as dietary strategies for reducing N excretion and excreta-derived N_(2)O emissions.
基金supported by the National Natural Science Foundation of China(32371407,82160421)the Natural Science Foundation of Jiangsu Province(BK20211322)。
文摘In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.
基金supported by the National Natural Science Foundation of China (No. 21073131)the Shanxi Natural Science Foundation(No. 2009011011-3)
文摘V-Pd/γ-Al2O3-TiO2 catalysts with different vanadium contents were prepared by a combined sol-gel and impregnation method. X-ray diffraction (XRD), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS) and catalytic removal of ethanol, acetaldehyde and nitrogen oxides at low temperature (〈300 ?C) were used to assess the properties of the catalysts. The results showed that the sample with 1wt% vanadium exhibited an excellent catalytic performance for simultaneous removal of ethanol, acetaldehyde and nitrogen oxides. The conversions of ethanol, acetaldehyde and nitrogen oxides at 250 ?C were 100%, 74.4% and 98.7%, respectively. V-Pd/γ-Al2O3-TiO2 catalyst with 1 wt% vanadium showed the largest surface area and higher dispersion of vanadium oxide on the catalyst surface, and possessed a larger mole fraction of V4+ species and unique PdO species on the surface, which can be attributed to the strong synergistic effect among palladium, vanadium and the carriers. The higher activity of V-Pd/γ-Al2O3-TiO2 catalyst is related to the V4+ and Pd2+ species on the surface, which might be favorable for the formation of active sites.
文摘Outdoor air quality, building materials, HVAC (Heating, Ventilation, Air Conditioning) systems and people activity are important factors in human exposition of polluted indoor air. The degree of signification varies in dependence on pollution character and its sources. Buildings eliminate significantly people exposition of outdoor pollutants, but on the other hand, buildings are significant source of indoor pollution. The contamination of indoor air is largely from the use of gas for heating and cooking appliances. A comprehensive analysis of indoor air pollution by nitrogen oxides shows that the extent of indoor air pollution and consequent exposure varies as a result of many factors mainly the differing dislribution of appliances and their level of use. This study aims to formulate a mathematical model for the production of nitrogen oxides indoors. The physical processes that determine the concentrations of indoor nitrogen oxides as a function of outdoor concentrations, indoor emission rates and building characteristics have been mathematically described. The mathematical model developed has been parameterized for typical Slovak residences. The modeling of the occurrence of indoor nitrogen oxides and verification of the model is presented in this paper.
文摘To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
基金the Hunan Provincial Natural Science Foundation of China (No. 07 JJ4003)
文摘The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment.
基金financially supported by Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2016-3)the National Key Research and Development Program of China (2016YFB0600901)the Instrument Developing Project of the Chinese Academy of Sciences
文摘Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.
基金supported by the National Natural Science Foundation of China (21433003, 21633008)the Jilin Province Science and Technology Development Program (20150101066JC, 20160622037JC, 20170203003SF, and 20170520150JH)the Hundred Talents Program of the Chinese Academy of Sciences and the Recruitment Program of Foreign Experts (WQ20122200077)
文摘The electrochemical methanol oxidation reaction(MOR) is of paramount importance for direct methanol fuel cell(DMFC) application, where efficient catalysts are required to facilitate the complicated multiple charge transfer process. The catalyst support not only determines the dispersion status of the catalysts particles, but also exerts great influence on the electronic structure of the catalysts, thereby altering its intrinsic activity. Herein, we demonstrated that nitrogen atoms, assisted by the pre-treatment of carbon matrix with oxidants, can be easily doped into carbon nanotubes at low temperature. The obtained nitrogen-doped carbon nanotubes can effectively improve the dispersion of the supported platinum nanoparticles and facilitate the MOR by modifying the electronic structure of platinum atoms,through catalyst-support interaction.
文摘Effects of nitrogen fertilizer,soil moisture and temperature on methane oxidation in paddy soil were investigated under laboratory conditions. Addition of 0.05 g N kg-1 soil as NH4Cl strongly inhibited methane oxidation and addition of the same rate of KCl also inhibited the oxidation but with more slight effect,suggesting that the inhibitory effect was partly caused by increase in osmotic potential in microorganism cell.Not only NH but also NO greatly affected methane oxidation.Urea did not affect methane oxidation in paddy soil in the first two days of incubation,but strong inhibitory effect was observed afterwards.Methane was oxidized in the treated soil with an optimum moisture of 280 g kg-1, and air-drying inhibited methane oxidation entirely.The optimum temperature of methane oxidation was about 30℃in paddy soil,while no methane oxidation was observed at 5℃or 50℃