Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), o...Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), ozone(O_3) and hydrogen peroxide(H_2O_2). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge(DBD)arrays in water mist spray. The relationship between droplet size and water content was examined,and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O_3 and nitrogen dioxide(NO_2) in DBD room decreased with increasing water content. Moreover, the concentrations of H_2O_2, O_3 and nitrogen oxides(NOx) in treated water decreased with increasing water content,and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last,the water containing phenol was tested in this system for the concentration from 100 mg/L to9.8 mg/L in a period of 35 min.展开更多
基金supported by National Natural Science Foundation of China(Nos.11274092,51107033,11404092,11274091)the Nantong Science and Technology Project,China(No.BK2014024)+1 种基金the Open Project of Jiangsu Province Key Laboratory of Environmental Engineering,China(No.KF2014001)the Fundamental Research Funds for the Central Universities,China(No.2014B11414)
文摘Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), ozone(O_3) and hydrogen peroxide(H_2O_2). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge(DBD)arrays in water mist spray. The relationship between droplet size and water content was examined,and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O_3 and nitrogen dioxide(NO_2) in DBD room decreased with increasing water content. Moreover, the concentrations of H_2O_2, O_3 and nitrogen oxides(NOx) in treated water decreased with increasing water content,and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last,the water containing phenol was tested in this system for the concentration from 100 mg/L to9.8 mg/L in a period of 35 min.