The objective of this study was to investigate the geographical origin of Chinese teas using carbon and nitrogen stable isotope ratio technology.The results showed that inter-provincial dispersion of teas in Guangdong...The objective of this study was to investigate the geographical origin of Chinese teas using carbon and nitrogen stable isotope ratio technology.The results showed that inter-provincial dispersion of teas in Guangdong(GD),Guangxi(GX),Hainan(HA),Fujian(FJ),Shandong(SD),Sichuan(SC),Chongqing(CQ),and Henan(HN) provinces was high,while in Zhejiang(ZJ),Hubei(HB),Yunnan(YN),and Anhui(AH) provinces,it was low.Tea samples from GD,GX,HA,and FJ provinces were clustered in one group and separated from those from AH and HB provinces.Thus,carbon and nitrogen stable isotope ratio technology could discriminate teas from among some provinces of China,but not from among others.Better separation might be obtained with a combination of isotopic ratios and other indexes,such as elemental data and organic components.展开更多
A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the rad...A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the radial mobility of N blurs the interannual variations in the long-term N records.Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining theδ^(15)N values.We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration andδ^(15)N of tree rings from endemic Qinghai spruce(Picea crassifolia)growing in the interior of the central Qilian Mountains,China,during the last 60 a.We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining theδ^(15)N values of tree rings.Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples.The total N removed by extraction with organic solvents was about 17.60%,with a significantly higher amount in the sapwood section(P<0.01).Theδ^(15)N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples.Extraction with organic solvents increased theδ^(15)N values markedly by about 5.2‰and reduced the variations in theδ^(15)N series.However,extraction with hot ultrapure water had little effect,with only a slight decrease in theδ^(15)N values of about 0.5‰.Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water.It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N.Theδ^(15)N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone.We suggest that theδ^(15)N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.展开更多
基金Project supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period (No. 2006BAK02A18)the Innovation Team of the Safety Standards and Testing Technology for Agricultural Products of Zhejiang Province,China(No. 2010R50028)
文摘The objective of this study was to investigate the geographical origin of Chinese teas using carbon and nitrogen stable isotope ratio technology.The results showed that inter-provincial dispersion of teas in Guangdong(GD),Guangxi(GX),Hainan(HA),Fujian(FJ),Shandong(SD),Sichuan(SC),Chongqing(CQ),and Henan(HN) provinces was high,while in Zhejiang(ZJ),Hubei(HB),Yunnan(YN),and Anhui(AH) provinces,it was low.Tea samples from GD,GX,HA,and FJ provinces were clustered in one group and separated from those from AH and HB provinces.Thus,carbon and nitrogen stable isotope ratio technology could discriminate teas from among some provinces of China,but not from among others.Better separation might be obtained with a combination of isotopic ratios and other indexes,such as elemental data and organic components.
基金supported by the National Natural Science Foundation of China (41971104)the Open Foundation of the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment+1 种基金Chinese Academy of Sciences (CASSKLLQG1817)the Qilian Mountain National Park Research Center (Qinghai)(GKQ2019-01)。
文摘A knowledge of the tree-ring stable nitrogen isotope ratio(δ^(15)N)can deepen our understanding of forest ecosystem dynamics by indicating the long-term availability,cycling and sources of nitrogen(N).However,the radial mobility of N blurs the interannual variations in the long-term N records.Previous studies of the chemical extraction of tree rings before analysis had produced inconsistent results and it is still unclear whether it is necessary to pre-treat wood samples from specific tree species to remove soluble N compounds before determining theδ^(15)N values.We compared the effects of pre-treatment with organic solvents and hot ultrapure water on the N concentration andδ^(15)N of tree rings from endemic Qinghai spruce(Picea crassifolia)growing in the interior of the central Qilian Mountains,China,during the last 60 a.We assessed the effects of different preparation protocols on the removal of the labile N compounds and investigated the need to pre-treat wood samples before determining theδ^(15)N values of tree rings.Increasing trends of the tree-ring N concentration were consistently observed in both the extracted and unextracted wood samples.The total N removed by extraction with organic solvents was about 17.60%,with a significantly higher amount in the sapwood section(P<0.01).Theδ^(15)N values of tree rings decreased consistently from 1960 to 2019 in both the extracted and unextracted wood samples.Extraction with organic solvents increased theδ^(15)N values markedly by about 5.2‰and reduced the variations in theδ^(15)N series.However,extraction with hot ultrapure water had little effect,with only a slight decrease in theδ^(15)N values of about 0.5‰.Our results showed that the radial pattern in the inter-ring movement of N in Qinghai spruce was not minimized by extraction with either organic solvents or hot ultrapure water.It is unnecessary to conduct hot ultrapure water extraction for the wood samples from Qinghai spruce because of its negligible effect on the removal of the labile N.Theδ^(15)N variation trend of tree rings in the unextracted wood samples was not influenced by the heartwood-sapwood transition zone.We suggest that theδ^(15)N values of the unextracted wood samples of the climate-sensitive Qinghai spruce could be used to explore the ecophysiological dynamics while focusing on the long-term variations.