期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Effects of Plant Density and Nitrogen Application Rate on Grain Yield and Nitrogen Uptake of Super Hybrid Rice 被引量:12
1
作者 LIN Xian-qing ZHU De-feng CHEN Hui-zhe ZHANG Yu-ping 《Rice science》 SCIE 2009年第2期138-142,共5页
The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different... The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different nitrogen application rates (120, 150, 180, and 210 kg/hm^2). The experiment was conducted on loam soil during 2004-2006 at the experimental farm of the China National Rice Research Institute in Hangzhou, China. In these years, the two hybrid rice cleady showed higher yield at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Guodao 6 produced an average grain yield of 10 215.6 kg/hm^2 across the three years, while the yield of Eryou 7954 was 9 633.0 kg/hm^2. With fewer plants per unit-area and larger plants in the plots, the two hybrid rice produced more panicles per plant in three years. The highest nitrogen uptake of the two hybrid rice was at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Further increasing nitrogen application rate was not advantageous for nitrogen uptake in super-high-yielding rice under the same plant density. 展开更多
关键词 super-high-yielding cultivation hybrid rice grain yield nitrogen uptake plant density nitrogen application rate
下载PDF
Cd Toxicity and Accumulation in Rice Plants Vary with Soil Nitrogen Status and Their Genotypic Difference can be Partly Attributed to Nitrogen Uptake Capacity 被引量:5
2
作者 Du Qin CHEN Ming-xue +4 位作者 ZHOU Rong CHAO Zhao-yun ZHU Zhi-wei SHAO Guo-sheng WANG Guang-ming 《Rice science》 SCIE 2009年第4期283-291,共9页
Two indica rice genotypes, viz. Milyang 46 and Zhenshan 97B differing in Cd accumulation and tolerance were used as materials in a hydroponic system consisting of four Cd levels (0, 0.1, 1.0 and 5.0 μmol/L) and thr... Two indica rice genotypes, viz. Milyang 46 and Zhenshan 97B differing in Cd accumulation and tolerance were used as materials in a hydroponic system consisting of four Cd levels (0, 0.1, 1.0 and 5.0 μmol/L) and three N levels (23.2, 116.0 and 232.0 mg/L) to study the effects of nitrogen status and nitrogen uptake capacity on Cd accumulation and tolerance in rice plants. N-efficient rice genotype, Zhenshan 97B, accumulated less Cd and showed higher Cd tolerance than N-inefficient rice genotype, Milyang 46. There was consistency between nitrogen uptake capacity and Cd tolerance in rice plants. Increase of N level in solution slightly increased Cd concentration in shoots but significantly increased in roots of both genotypes. Compared with the control at low N level, Cd tolerance in both rice genotypes could be significantly enhanced under normal N level, but no significant difference was observed between the Cd tolerances under normal N (116.0 mg/L) and high N (232.0 mg/L) conditions. The result proved that genotypic differences in Cd accumulation and toxicity could be, at least in part, attributed to N uptake capacity in rice plants. 展开更多
关键词 rice (Oryza sativa) nitrogen CADMIUM genotypic difference nitrogen uptake capacity TOLERANCE
下载PDF
A New Method to Determine Central Wavelength and Optimal Bandwidth for Predicting Plant Nitrogen Uptake in Winter Wheat 被引量:5
3
作者 YAO Xin-feng YAO Xia +4 位作者 TIAN Yong-chao NI Jun LIU Xiao-jun CAO Wei-xing ZHU Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期788-802,共15页
Plant nitrogen (N) uptake is a good indicator of crop N status. In this study, a new method was designed to determine the central wavelength, optimal bandwidth and vegetation indices for predicting plant N uptake (... Plant nitrogen (N) uptake is a good indicator of crop N status. In this study, a new method was designed to determine the central wavelength, optimal bandwidth and vegetation indices for predicting plant N uptake (g N m-2) in winter wheat (Triticum aestivum L.). The data were collected from the ground-based hyperspectral reflectance measurements in eight field experiments on winter wheat of different years, eco-sites, varieties, N rates, sowing dates, and densities. The plant N uptake index (PNUI) based on NDVI of 807 nm combined with 736 nm was selected as the optimal vegetation index, and a linear model was developed with R2 of 0.870 and RMSE of 1.546 g N m-2 for calibration, and R2 of 0.834, RMSE of 1.316 g N m-2, slope of 0.934, and intercept of 0.001 for validation. Then, the effect of the bandwidth of central wavelengths on model performance was determined based on the interaction between central wavelength and bandwidth expansion. The results indicated that the optimal bandwidth varies with the changes of the central wavelength and with the interaction between the two bands in one vegetation index. These findings are important for prediction and diagnosis of plant N uptake more precise and accurate in crop management. 展开更多
关键词 central wavelength optimal bandwidth plant nitrogen uptake winter wheat
下载PDF
Effects of Chlorination on Soil Chemical Properties and Nitrogen Uptake for Tomato Drip Irrigated with Secondary Sewage Effluent 被引量:2
4
作者 LI Yan-feng LI Jiu-sheng ZHANG Hang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第9期2049-2060,共12页
Chlorination is usually an economical method for treating clogging in drip emitters during sewage application. Appropriate assessment of the responses of soil and crop is essential for determining an optimal chlorinat... Chlorination is usually an economical method for treating clogging in drip emitters during sewage application. Appropriate assessment of the responses of soil and crop is essential for determining an optimal chlorination scheme. During 2008 to 2009, field experiments were conducted in a solar-heated greenhouse for tomato drip irrigated with secondary sewage effluent, to investigate the influences of chlorine injection intervals and levels on soil chemical properties and nitrogen uptake. Injection intervals ranging from two to eight weeks and injection concentrations ranging from 2 to 50 mg L-1 were used. A salinity factor and a nutrient factor were extracted from the pool of the nine soil chemical constituents using factor analysis method. The results demonstrated that chlorination practices increased the residual Cl in the soil, resulting in an increased salinity factor, especially for the frequent chlorination at a high injection concentration. Chlorination weakened the accumulation of nutrients factor in the upper soil layer. Nitrogen uptake of the tomato plants also was inhibited by the increased salinity in the upper soil layer caused by high chlorination levels. In order to reduce the unfavorable effect on soil chemical properties and nitrogen uptake, chlorination scheme with concentrations of lower than 20 mg L-1 was recommended. 展开更多
关键词 CHLORINATION drip irrigation soil chemical properties nitrogen uptake sewage effluent
下载PDF
Brassinosteroids modulate nitrogen physiological response and promote nitrogen uptake in maize(Zea mays L.) 被引量:1
5
作者 Jiapeng Xing Yubin Wang +3 位作者 Qingqing Yao Yushi Zhang Mingcai Zhang Zhaohu Li 《The Crop Journal》 SCIE CSCD 2022年第1期166-176,共11页
Brassinosteroids(BRs)are steroid hormones that function in plant growth and development and response to environmental stresses and nutrient supplies.However,few studies have investigated the effect of BRs in modulatin... Brassinosteroids(BRs)are steroid hormones that function in plant growth and development and response to environmental stresses and nutrient supplies.However,few studies have investigated the effect of BRs in modulating the physiological response to nitrogen(N)supply in maize.In the present study,BR signalingdeficient mutant zmbri1-RNAi lines and exogenous application of 2,4-epibrassinolide(e BL)were used to study the role of BRs in the regulation of physiological response in maize seedlings supplied with N.Exogenous application of e BL increased primary root length and plant biomass,but zmbri1 plants showed shorter primary roots and less plant biomass than wild-type plants under low N(LN)and normal N(NN)conditions.LN induced the expression of the BR signaling-associated genes Zm DWF4,Zm CPD,Zm DET2,and Zm BZR1 and the production of longer primary roots than NN.Knockdown of Zm BRI1 weakened the biological effects of LN-induced primary root elongation.e BL treatment increased N accumulation in shoots and roots of maize seedlings exposed to LN or NN treatment.Correspondingly,zmbri1 plants showed lower N accumulation in shoots and roots than wild-type plants.Along with reduced N accumulation,zmbri1 plants showed lower NO3-fluxes and^(15)NO_(3)^(-)uptake.The expression of nitrate transporter(NRT)genes(Zm NPF6.4,Zm NPF6.6,Zm NRT2.1,Zm NRT2.2)was lower in zmbri1 than in wild-type roots,but e BL treatments up-regulated the transcript expression of NRT genes.Thus,BRs modulated N physiological response and regulated the transcript expression of NRT genes to promote N uptake in maize. 展开更多
关键词 BRASSINOSTEROIDS nitrogen uptake Nitrate transporter gene Root architecture MAIZE
下载PDF
Overexpression of IbSnRK1 enhances nitrogen uptake and carbon assimilation in transgenic sweetpotato 被引量:2
6
作者 REN Zhi-tong ZHAO Hong-yuan +3 位作者 HE Shao-zhen ZHAI Hong ZHAO Ning LIU Qing-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期296-305,共10页
Nitrogen is an important nutrient for plant development. Nitrogen and carbon metabolisms are tightly linked to physiological functions in plants. In this study, we found that the IbSnRK1 gene was induced by Ca(NO3)2... Nitrogen is an important nutrient for plant development. Nitrogen and carbon metabolisms are tightly linked to physiological functions in plants. In this study, we found that the IbSnRK1 gene was induced by Ca(NO3)2. Its overexpression enhanced nitrogen uptake and carbon assimilation in transgenic sweetpotato. After Ca(^15NO3)2 treatment, the -(15)N atom excess, -(15)N and total N content and nitrogen uptake efficiency(NUE) were significantly increased in the roots, stems, and leaves of transgenic plants compared with wild type(WT) and empty vector control(VC). After Ca(NO3)2 treatment, the increased nitrate N content, nitrate reductase(NR) activity, free amino acid content, and soluble protein content were found in the roots or leaves of transgenic plants. The photosynthesis and carbon assimilation were enhanced. These results suggest that the IbSnRK1 gene play a important role in nitrogen uptake and carbon assimilation of sweetpotato. This gene has the potential to be used for improving the yield and quality of sweetpotato. 展开更多
关键词 carbon assimilation IbSnRK1 nitrogen uptake sweetpotato
下载PDF
Effects of phytoplankton community and interaction between environmental variables on nitrogen uptake and transformations in an urban river
7
作者 Jing YANG Haiguang PEI +5 位作者 Junping LÜ Qi LIU Fangru NAN Xudong LIU Shulian XIE Jia FENG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第3期1012-1026,共15页
Phytoplankton are not only the main bearer of the nitrogen cycle,but also a key link driving nitrogen cycle.However,most phytoplankton cannot directly use N_(2),and they must uptake nitrogenous nutrients(ammonium,nitr... Phytoplankton are not only the main bearer of the nitrogen cycle,but also a key link driving nitrogen cycle.However,most phytoplankton cannot directly use N_(2),and they must uptake nitrogenous nutrients(ammonium,nitrate,and urea)to meet their photosynthesis needs.We examined the uptake characteristics of several nitrogenous substrates using stable isotope technique and identifi ed the potential nitrogen transformations in the Fenhe River.Results revealed that spring phytoplankton community composed of mainly Fragilaria,Ulothrix,Microcystis,and Synedra.Urea can meet the spring partial nitrogen requirement of phytoplankton.The large uptake rate of urea depended on urease,chlorophyll a,and nitrate concentrations as shown in random forest models.Cyanobacteria explained more than 42.8%of the total abundance at all sites in summer.Upstream was dominated by Actinastrum,and Chlorella was relevant in the downstream section.The uptake rates of ammonium were higher than those of nitrate and urea.In addition,the random forest model demonstrated that ammonium,urease,and dissolved oxygen(DO)were the major contributors to the ammonium uptake rates.Ammonium was taken up preferentially in autumn and phytoplankton(Cyclotella,Chlorella,and Pseudanabaena)appeared to be able to respond to changes in nitrogen forms by adjusting their community composition.Structural equation models demonstrated that temperature-induced changes in DO directly affected the transformations of different forms of nitrogen.At the same time,dissolved organic carbon can directly act on nutrients and then indirectly affect enzyme activity.There were great diff erences in the positive and negative effects of different paths in the process of nitrate reduction to nitrite and then reduction to ammonium in time and space.These findings provide a better understanding of the underlying mechanism of nitrogen uptake and the influences of interaction between environmental variables on nitrogen transformations in urban river ecosystems. 展开更多
关键词 PHYTOPLANKTON environmental variables nitrogen uptake TRANSFORMATION urban river
下载PDF
Responses of Nitrogen Uptake and Yield of Winter Wheat to Nonuniformity of Sprinkler Fertigation
8
作者 LI Jiu-sheng LI Bei +1 位作者 SU Mei-shuang RAO Min-jie 《Agricultural Sciences in China》 CAS CSCD 2005年第9期693-699,共7页
Field experiments were conducted to investigate the effects of nonuniformity of sprinkler fertigation and the amount of fertilizers applied through fertigation on nitrogen uptake and crop yield during two growing seas... Field experiments were conducted to investigate the effects of nonuniformity of sprinkler fertigation and the amount of fertilizers applied through fertigation on nitrogen uptake and crop yield during two growing seasons of winter wheat in 2002-2003 and 2003-2004 at an experimental station in Beijing. In the experiments, the seasonal averaged Christiansen irrigation uniformity coefficient (CU) varied from 72% to 84%. Except for the fertilizer applied before planting, fertilizer was applied with the sprinkler irrigation system with a seasonal averaged CU for fertigation varied from 71% to 85%. Three levels of fertilizer applied varying from 0 to 180 kg N ha^-1 were used in the experiments. The experimental results demonstrated that sprinkler fertigation uniformity had insignificant effects on nitrogen uptake and crop yield for the uniformity range tested. Also, the influence of fertilizer applied through sprinkler fertigation on crop yield was minor, while the total nitrogen content for stem and nitrogen uptake increased with increasing fertilizer applied. 展开更多
关键词 Sprinkler irrigation FERTIGATION UNIFORMITY Winter wheat nitrogen uptake YIELD
下载PDF
Growth,Nitrogen Uptake and Flow in Maize Plants Affected by Root Growth Restriction 被引量:4
9
作者 Liangzheng Xu Junfang Niu +1 位作者 Chunjian Li Fusuo Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第7期689-697,共9页
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a ... The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root : shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate. 展开更多
关键词 nitrogen flow nitrogen uptake root system components Zea mays
原文传递
Nitrogen uptake by phytoplankton in surface waters of the Indian sector of Southern Ocean during austral summer 被引量:1
10
作者 S. C. TRIPATHY SIVAJI PATRA +3 位作者 K. VISHNU VARDHAN A. SARKAR R. K. MISHRA N. ANILKUMAR 《Frontiers of Earth Science》 SCIE CAS CSCD 2018年第1期52-62,共11页
This study reports the nitrogen uptake rate (using 15N tracer) of phytoplankton in surface waters of different frontal zones in the Indian sector of the Southern Ocean (SO) during austral summer of 2013. The inves... This study reports the nitrogen uptake rate (using 15N tracer) of phytoplankton in surface waters of different frontal zones in the Indian sector of the Southern Ocean (SO) during austral summer of 2013. The investigated area encompasses four major frontal systems, i.e., the subtropical front (STF), subantarctic front (SAF), polar front-1 (PF1) and polar front-2 (PF2). Southward decrease of surface water temperature was observed, whereas surface salinity did not show any significant trend. Nutrient (NO3- and SiO44-) concentrations increased southward from STF to PF; while ammonium (NH4+), nitrite (NO2-) and phosphate (PO433 remained compara- tively stable. Analysis of nutrient ratios indicated potential N-limited conditions at the STF and SAF but no such scenario was observed for PF. In terms of phytoplankton biomass, PF1 was found to be the most productive followed by SAF, whereas PF2 was the least productive region. Nitrate uptake rate increased with increasing latitude, as no systematic spatial variation was discerned for NH4+ and urea (CO(NH2)2). Linear relationship between nitrate and total N-uptake reveals that the studied area is capable of exporting up to 60% of the total production to the deep ocean if the environmental settings are favorable. Like N-uptake rates the f-ratio also increased towards PF region indicating comparatively higher new production in the PF than in the subtropics. The moderately high averagefiratio (0.53) indicates potentially near equal contributions by new production and regenerated production to the total productivity in the study area. Elevation in N-uptake rates with declining temperature suggests that the SO with its vast quantity of cool water could play an important role in drawing down the atmospheric CO2 through the "solubility pump". 展开更多
关键词 nitrogen uptake F-RATIO new productivity frontal zones Southern Ocean
原文传递
Tiller fertility is critical for improving grain yield,photosynthesis,and nitrogen efficiency in wheat 被引量:3
11
作者 DING Yong-gang ZHANG Xin-bo +7 位作者 MA Quan LI Fu-jian TAO Rong-rong ZHU Min LI Chun-yan ZHU Xin-kai GUO Wen-shan DING Jin-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2054-2066,共13页
Genetic improvement has promoted wheat’s grain yield and nitrogen use efficiency(NUE)during the past decades.Therefore,the current wheat cultivars exhibit higher grain yield and NUE than previous cultivars in the Yan... Genetic improvement has promoted wheat’s grain yield and nitrogen use efficiency(NUE)during the past decades.Therefore,the current wheat cultivars exhibit higher grain yield and NUE than previous cultivars in the Yangtze River Basin,China since the 2000s.However,the critical traits and mechanisms of the increased grain yield and NUE remain unknown.This study explores the mechanisms underlying these new cultivars’increased grain yield and NUE by studying 21 local cultivars cultivated for three growing seasons from 2016 to 2019.Significantly positive correlations were observed between grain yield and NUE in the three years.The cultivars were grouped into high(HH),medium(MM),and low(LL)grain yield and NUE groups.The HH group exhibited significantly high grain yield and NUE.High grain yield was attributed to more effective ears by high tiller fertility and greater single-spike yield by increasing post-anthesis single-stem biomass.Compared to other groups,the HH group demonstrated a longer leaf stay-green ability and a greater flag leaf photosynthetic rate after anthesis.It also showed higher N accumulation at pre-anthesis,which contributed to increasing N accumulation per stem,including stem and leaf sheath,leaf blade,and unit leaf area at pre-anthesis,and promoting N uptake efficiency,the main contribution of high NUE.Moreover,tiller fertility was positively related to N accumulation per stem,N accumulation per unit leaf area,leaf stay-green ability,and flag leaf photosynthetic rate,which indicates that improving tiller fertility promoted N uptake,leaf N accumulation,and photosynthetic ability,thereby achieving synchronous improvements in grain yield and NUE.Therefore,tiller fertility is proposed as an important kernel indicator that can be used in the breeding and management of cultivars to improve agricultural efficiency and sustainability. 展开更多
关键词 grain yield NUE tiller fertility PHOTOSYNTHESIS nitrogen uptake
下载PDF
Apparent variations in nitrogen runoff and its uptake in paddy rice under straw incorporation
12
作者 Muhammad Amjad BASHIR ZHAI Li-mei +5 位作者 WANG Hong-yuan LIU Jian Qurat-Ul-Ain RAZA GENG Yu-cong Abdur REHIM LIU Hong-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第11期3356-3367,共12页
Straw incorporation is a widespread practice to promote agricultural sustainability.However,the potential effects of straw incorporation with the prolonged time on nitrogen(N)runoff loss from paddy fields are not well... Straw incorporation is a widespread practice to promote agricultural sustainability.However,the potential effects of straw incorporation with the prolonged time on nitrogen(N)runoff loss from paddy fields are not well studied.The current study addresses the knowledge gap by assessing the effects of straw incorporation on the processes influencing N runoff patterns and its impacts on crop yield,N uptake,total N(TN),and soil organic matter(SOM).We conducted field experiments with rice(Oryza sativa L.)–wheat(Triticum aestivum L.)rotation,rice–tobacco(Nicotiana tabacum L.)rotation,and double-rice cropping in subtropical China from 2008 to 2012.Each rotation had three N treatments:zero N fertilization(CK),chemical N fertilization(CF),and chemical N fertilization combined with straw incorporation(CFS).The treatment effects were assessed on TN runoff loss,crop yield,N uptake,soil TN stock,and SOM.Results showed that TN runoff was reduced by substituting part of the chemical N fertilizer with straw N in the double rice rotation,while crop N uptake was significantly(P<0.05)decreased due to the lower bioavailability of straw N.In contrast,in both rice–wheat and rice–tobacco rotations,TN runoff in CFS was increased by 0.9–20.2%in the short term when straw N was applied in addition to chemical N,compared to CF.However,TN runoff was reduced by 2.3–19.3%after three years of straw incorporation,suggesting the long-term benefits of straw incorporation on TN loss reduction.Meanwhile,crop N uptake was increased by 0.8–37.3%in the CFS of both rotations.This study demonstrates the challenges in reducing N runoff loss while improving soil fertility by straw incorporation over the short term but highlights the potential of long-term straw incorporation to reduce N loss and improve soil productivity. 展开更多
关键词 straw return nitrogen runoff water pollution rice yield nitrogen uptake
下载PDF
Nitrogen uptake strategies of mature conifers in Northeastern China, illustrated by the ^(15)N natural abundance method
13
作者 Xulun Zhou Ang Wang +4 位作者 Erik A.Hobbie Feifei Zhu Xueyan Wang Yinghua Li Yunting Fang 《Ecological Processes》 SCIE EI 2021年第1期470-480,共11页
Background:Conifers partition different N forms from soil,including ammonium,nitrate,and dissolved organic N(DON),to sustain plant growth.Previous studies focused on inorganic N sources and specific amino acid forms u... Background:Conifers partition different N forms from soil,including ammonium,nitrate,and dissolved organic N(DON),to sustain plant growth.Previous studies focused on inorganic N sources and specific amino acid forms using ^(15)N labelling,but knowledge of the contribution of DON to mature conifers’N uptake is still scarce.Here,we quantified the contribution of different N forms(DON vs.NH_(4)^(+)vs.NO_(3)^(−))to total N uptake,based on ^(15)N natural abundance of plant and soil available N,in four mature conifers(Pinus koraiensis,Pinus sylvestris,Picea koraiensis,and Larix olgensis).Results:DON contributed 31%,29%,28%,and 24%to total N uptake by Larix olgensis,Picea koraiensis,Pinus koraiensis,and Pinus sylvestris,respectively,whereas nitrate contributed 42 to 52%and ammonium contributed 19 to 29%of total N uptake for these four coniferous species.Conclusions:Our results suggested that all four conifers could take up a relatively large proportion of nitrate,while DON was also an important N source for the four conifers.Given that DON was the dominant N form in study soil,such uptake pattern of conifers could be an adaptive strategy for plants to compete for the limited available N sources from soil so as to promote conifer growth and maintain species coexistence. 展开更多
关键词 nitrogen uptake preference Organic nitrogen Inorganic nitrogen Coniferous plantation ^(15)N natural abundance Isotopic mixing model
原文传递
An united model and simulation of nitrogen transport, uptake and transformation in soil-crop system 被引量:2
14
作者 Wang Hong qi, Chen Jia jun State Key Laboratory of Environmental Simulation and Pollution Control, Institute of Environmental Science, Beijing Normal University,Beijing 100875, China Li Yun zhu Department of Soil and Water Science, Agricultu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第1期89-99,共11页
Based on the simulation experiments of water and nitrogen transport, transformation and uptaking, under the condition of different cropping pattern of winter wheat in the greenhouse and the condition of different wast... Based on the simulation experiments of water and nitrogen transport, transformation and uptaking, under the condition of different cropping pattern of winter wheat in the greenhouse and the condition of different wastewater irrigation plan. An united computing model of crop growth, distribution of roots, water and nitrogen uptaking by roots and transformation in soil crop system was developed. Growth status of crops, root growth condition and water, nitrogen uptaking pattern by roots under different watering and N pollution conditions were simulated and analyzed due to the development of this mathematical model and the identification of parameters and boundary conditions in the greenhouse, so that it provided a primary computing method for selecting an efficient, productive watering and wastewater irrigating plan. 展开更多
关键词 soil crop system nitrogen uptaking and movement mathematical model.
下载PDF
Effect of nitrogen fertilizer on the uptake and utilization of potassium by various rice varieties in purple soil 被引量:1
15
《Chinese Rice Research Newsletter》 1999年第4期11-12,共2页
Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mine... Nitrogen and potassium are important nutrientelements for rice.Besides supplied by the or- ganic manure,potassium nutrition of ricecomes dominantly from purple soils in Sichuanbasin.Potassium exists abundantly in mineralforms in the purple soils.Availability of soilpotassium for crop depends on the potassiumforms,the uptake ability of crops,and fertiliz-er practices.A pot culture experiment wasconducted to study the kinetics of potassiumuptake in the purple soil(total N 22.64g·kg,total K 24.36g·kg,available N 102.6mg·kg,available K 140.6mg·kg,acidsoluble K 936.0mg·kg,and pH 6.8).Ma-terials used were three Fhybrid rices,Eryou 展开更多
关键词 Effect of nitrogen fertilizer on the uptake and utilization of potassium by various rice varieties in purple soil
下载PDF
Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system 被引量:18
16
作者 YONG Tai-wen CHEN Ping +5 位作者 DONG Qian DU Qing YANG Feng WANG Xiao-chun LIU Wei-guo YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期664-676,共13页
In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enh... In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems. Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China. To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS). Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha-1), and CN (conventional N application: 330 kg N ha-1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated. At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant-1 and 0.14 mL h-1 plant-1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively. The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3. The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha-1, 28.5%, and 5.7 kg grain kg-1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively. The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively. Those results suggested that LN with distances of 15-30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping. Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield. 展开更多
关键词 relay intercropping lower nitrogen nitrogen use efficiency nitrogen fixation nitrogen uptake
下载PDF
Maize-legume intercropping promote N uptake through changing the root spatial distribution,legume nodulation capacity,and soil N availability 被引量:3
17
作者 ZHENG Ben-chuan ZHOU Ying +9 位作者 CHEN Ping ZHANG Xiao-na DU Qing YANG Huan WANG Xiao-chun YANG Feng XIAO Te LI Long YANG Wen-yu YONG Tai-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第6期1755-1771,共17页
Legume cultivars affect N uptake,component crop growth,and soil physical and chemical characteristics in maize-legume intercropping systems.However,how belowground interactions mediate root growth,N fixation,and nodul... Legume cultivars affect N uptake,component crop growth,and soil physical and chemical characteristics in maize-legume intercropping systems.However,how belowground interactions mediate root growth,N fixation,and nodulation of different legumes to affect N uptake is still unclear.Hence,a two-year experiment was conducted with five planting patterns,i.e.,maize-soybean strip intercropping(IMS),maize-peanut strip intercropping(IMP),and corresponding monocultures(monoculture maize(MM),monoculture soybean(MS),and monoculture peanut(MP)),and two N application rates,i.e.,no N fertilizer(N-)and conventional N fertilizer(N+),to examine relationships between N uptake and root distribution of crops,legume nodulation and soil N availability.Results showed that the averaged N uptake per unit area of intercrops was significantly lower than the corresponding monocultures.Compared with the monoculture system,the N uptake of the intercropping systems increased by 31.7-45.4%in IMS and by 7.4-12.2%in IMP,respectively.The N uptake per plant of intercropped maize and soybean significantly increased by 61.6 and 31.8%,and that of intercropped peanuts significantly decreased by 46.6%compared with the corresponding monocultures.Maize and soybean showed asymmetrical distribution of roots in strip intercropping systems.The root length density(RLD)and root surface area density(RSAD)of intercropped maize and soybean were significantly greater than that of the corresponding monocultures.The roots of intercropped peanuts were confined,which resulted in decreased RLD and RSAD compared with the monoculture.The nodule number and nodule fresh weight of soybean were significantly greater in IMS than in MS,and those of peanut were significantly lower in IMP than in MP.The soil protease,urease,and nitrate reductase activities of maize and soybean were significantly greater in IMS and IMP than in the corresponding monoculture,while the enzyme activities of peanut were significantly lower in IMP than in MP.The soil available N of maize and soybean was significantly greater increased in IMS and IMP than in the corresponding monocultures,while that of IMP was significantly lower than in MP.In summary,the IMS system was more beneficial to N uptake than the IMP system.The intercropping of maize and legumes can promote the N uptake of maize,thus reducing the need for N application and improving agricultural sustainability. 展开更多
关键词 maize-legume strip intercropping nitrogen uptake soil enzyme activity soil available nitrogen root length density
下载PDF
How delaying post-silking senescence in lower leaves of maize plants increases carbon and nitrogen accumulation and grain yield 被引量:3
18
作者 Rongfa Li Dandan Hu +5 位作者 Hao Ren Qinglong Yang Shuting Dong Jiwang Zhang Bin Zhao Peng Liu 《The Crop Journal》 SCIE CSCD 2022年第3期853-863,共11页
Planting maize at high densities leads to early leaf senescence,and the resulting reduction in the number of lower leaves affects the plant’s root function and lowers its grain yield.However,the nature of the process... Planting maize at high densities leads to early leaf senescence,and the resulting reduction in the number of lower leaves affects the plant’s root function and lowers its grain yield.However,the nature of the process by which lower leaf senescence affects biomass accumulation and grain yield formation in maize is not clear.This study aimed to shed light on how these factors are related by investigating the effects of the plant growth regulator 6-benzyladenine(6-BA)on the senescence of lower leaves of maize plants.In two maize cultivars planted at densities of 67,500(low density,LD)and 90,000(high density,HD)plants ha^(-1),plants treated with 6-BA maintained a high green leaf area index(LAI)longer than control(CK)plants,enabling them to maintain a higher photosynthetic rate for a longer period of time and produce more biomass before reaching physiological maturity.Spraying the lower leaves of maize plants with a 6-BA solution increased the distribution of;C-photosynthates to their roots,lower leaves and bracts,a result that can be ascribed to a decreased retention of;C-photosynthates in the stem and grain.In both seasons of the experiment,maize plants treated with 6-BA accumulated more N in grain and maintained a higher N content in roots and leaves,especially in lower leaves,than CK.Increased C assimilation in the lower leaves may explain why N uptake in plants subjected to the 6-BA treatment exceeded that in CK plants and why both photosynthesis rate and dry matter accumulation were maintained throughout grain filling.Our results suggest that a suitable distribution of C and N in leaves post-silking may maintain plant root function,increase N use efficiency,maximize the duration of high LAI,and increase grain yield. 展开更多
关键词 13C-Photosynthate distribution nitrogen uptake Maize grain yield Delaying lower leaf senescence Post-silking
下载PDF
Review grain yield and nitrogen use efficiency in rice production regions in China 被引量:13
19
作者 CHE Sheng-guo ZHAO Bing-qiang +5 位作者 LI Yan-ting YUAN Liang LI Wei LIN Zhi-an HU Shu-wen SHEN Bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2456-2466,共11页
As one of the staple food crops, rice(Oryza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use ... As one of the staple food crops, rice(Oryza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use efficiency(NUE) of rice in China often involved site-specific field experiments, or small regions with insufficient data, which limited the representation for the current rice production regions. In this study, a database covering a wide range of climate conditions, soil types and field managements across China, was developed to estimate rice grain yield and NUE in various rice production regions in China and to evaluate the relationships between N rates and grain yield, NUE. According to the database for rice, the values of grain yield, plant N accumulation, N harvest index(HIN), indigenous N supply(INS), internal N efficiency(IE_N), reciprocal internal N efficiency(RIE_N), agronomic N use efficiency(AE_N), partial N factor productivity(PEPN), physiological N efficiency(PE_N), and recover efficiency of applied N(RE_N) averaged 7.69 t ha^(–1), 152 kg ha^(–1), 0.64 kg kg^(–1), 94.1 kg kg^(–1), 53.9 kg kg^(–1), 1.98 kg kg^(–1), 12.6 kg kg^(–1), 48.6 kg kg^(–1), 33.8 kg kg^(–1), and 39.3%, respectively. However, the corresponding values all varied tremendously with large variation. Rice planting regions and N rates had significant influence on grain yield, N uptake and NUE values. Considering all observations, N rates of 200 to 250 kg ha^(–1) commonly achieved higher rice grain yield compared to less than 200 kg N ha^(–1) and more than 250 kg N ha^(–1) at most rice planting regions. At N rates of 200 to 250 kg ha^(–1), significant positive linear relationships were observed between rice grain yield and AE_N, PE_N, RE_N, IE_N, and PFPN, and 46.49, 24.64, 7.94, 17.84, and 88.24% of the variation in AE_N, PE_N, RE_N, IE_N, and PFPN could be explained by grain yield, respectively. In conclusion, in a reasonable range of N application, an increase in grain yield can be achieved accompanying by an acceptable NUE. 展开更多
关键词 rice grain yield nitrogen uptake nitrogen use efficiency China
下载PDF
Physiological and Molecular Analysis of Applied Nitrogen in Rice Genotypes 被引量:2
20
作者 Khalid Rehman HAKEEM Ruby CHANDNA +1 位作者 Altaf AHMAD1 Muhammad IQBAL 《Rice science》 SCIE 2012年第3期213-222,共10页
Ten genotypes of rice (Oryza sativa L.) were grown for 30 d in complete nutrient solution with 1 mmol/L (N-insufficient),4 mmol/L (N-moderate) and 10 mmol/L (N-high) nitrogen levels,and nitrogen efficiency (N... Ten genotypes of rice (Oryza sativa L.) were grown for 30 d in complete nutrient solution with 1 mmol/L (N-insufficient),4 mmol/L (N-moderate) and 10 mmol/L (N-high) nitrogen levels,and nitrogen efficiency (NE) was analyzed.Growth performance,measured in terms of fresh weight,dry weight and lengths of root and shoot,was higher in N-efficient than in N-inefficient rice genotypes at low N level.Of these 10 genotypes,Suraksha was identified as the most N-efficient,while Vivek Dhan the most N-inefficient.To find out the physiological basis of this difference,the nitrate uptake rate of root and the activities of nitrate assimilatory enzymes in leaves of N-efficient and N-inefficient rice genotypes were studied.Uptake experiments revealed the presence of two separate nitrate transporter systems mediating high-and low-affinity nitrate uptake.Interestingly,the nitrate uptake by the roots of Suraksha is mediated by both high-and low-affinity nitrate transporter systems,while that of Vivek Dhan by only low-affinity nitrate transporter system.Study of the activities and expression levels of nitrate assimilatory enzymes in N-efficient and N-inefficient rice genotypes showed that nitrate reductase (NR) and glutamine synthetase (GS) play important roles in N assimilation under low-nitrogen conditions. 展开更多
关键词 rice nitrogen absorption and assimilation NITRATE nitrogen efficiency nitrogen uptake real-time PCR
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部