期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Heterogeneous single-cluster catalysts(Mn_(3),Fe_(3),Co_(3),and Mo_(3))supported on nitrogen-doped graphene for robust electrochemical nitrogen reduction 被引量:2
1
作者 Guokui Zheng Lei Li +2 位作者 Ziqi Tian Xingwang Zhang Liang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期612-619,共8页
Electrochemical nitrogen reduction reaction(NRR)is one of the most promising alternatives to the traditional Haber-Bosch process.Designing efficient electrocatalysts is still challenging.Inspired by the recent experim... Electrochemical nitrogen reduction reaction(NRR)is one of the most promising alternatives to the traditional Haber-Bosch process.Designing efficient electrocatalysts is still challenging.Inspired by the recent experimental and theoretical advances on single-cluster catalysts(SCCs),we systematically investigated the catalytic performance of various triple-transition-metal-atom clusters anchored on nitrogen-doped graphene for NRR through density functional theory(DFT)calculation.Among them,Mn_(3)-N4,Fe_(3)-N4,Co_(3)-N4,and Mo_(3)-N4 were screened out as electrocatalysis systems composed of non-noble metal with high activity,selectivity,stability,and feasibility.Particularly,the Co_(3)-N4 possesses the highest activity with a limiting potential of-0.41 V through the enzymatic mechanism.The outstanding performance of Co_(3)-N4 can be attributed to the unique electronic structure leading to strong π backdonation,which is crucial in effective N_(2) activation.This work not only predicts four efficient non-noble metal electrocatalysts for NRR,but also suggest the SCCs can serve as potential candidates for other important electrochemical reactions. 展开更多
关键词 Single-cluster catalysts Nitrogen reduction reaction nitrogen-doped graphene Density functional theory
下载PDF
Zeolitic imidazolate framework-67 derived Al-Co-S hierarchical sheets bridged by nitrogen-doped graphene:Incorporation of PANI derived carbon nanorods for solid-state asymmetric supercapacitors
2
作者 Emad S.Goda Bidhan Pandit +4 位作者 Sang Eun Hong Bal Sydulu Singu Seong K.Kim Essam B.Moustafa Kuk Ro Yoon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期429-445,I0012,共18页
Metal sulfides have been widely enticed as battery-type electrodes in supercapacitor devices because of their maximal theoretical capacitance.Nevertheless,their lower conductivity and ion transport kinetics can largel... Metal sulfides have been widely enticed as battery-type electrodes in supercapacitor devices because of their maximal theoretical capacitance.Nevertheless,their lower conductivity and ion transport kinetics can largely restrict their rate performance,hence the practical usage in fields of demanding high power devices.Therefore,the design of new electrodes with higher energy and power densities remains a highly challenging task.To the best of our knowledge,a novel hierarchical composite of Al-CoS_(2) on nitrogendoped graphene(NG)is prepared based on a zeolite imidazole framework using a simple and scalable hydrothermal process.In this hybrid,ultrathin Al-CoS_(2) nanosheet arrays are vertically orientated on the NG framework to limit self-aggregation,hence increasing the electrical property and cycle stability of composite.It is investigated that the Al/Co feeding ratio plays a crucial role in controlling the obtained hierarchical structure of Al-Co-S sheets and their electrode performance.Also,Al^(3+) can influence remarkably the morphology and electrochemical property of the resultant graphene composite.An effective synergism is noticed between the redox Al-CoS_(2) and NG resulting in fast electron transfer and chargingdischarging processes.Surprisingly,when the as-developed composite is utilized as a positive electrode at an applied current density of 1 A/g,a specific capacitance of 1915.8 F/g is attained with ultra-long cycle stability(96%,10,000 cycles)and an excellent retention rate(~89%).As a consequence,when a solid-state asymmetric supercapacitor(ASC)device is made by combining an Al-CoS_(2) @NG hybrid with a negative electrode made of polyaniline(PANI)derived carbon nanorods(PCNRs),it demonstrates remarkable specific capacitance(188 F/g),energy density(66.9 Wh/kg),and cyclic stability of 92%after 10,000 cycles.This may open the pathway for the application of the next-generation supercapacitors in the future. 展开更多
关键词 Hierarchical sheets MOFs Al-doped CoS_(2) nitrogen-doped graphene Solid-state supercapacitor
下载PDF
Novel Formaldehyde Sensor based on Hydrogen Peroxide/Melamine Modulated Photoluminescence of Nitrogen-doped Graphene Quantum Dots
3
作者 张玉 SU Xingguang 马强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1481-1486,共6页
A modulated photoluminescence nanosensor was developed for the quantitative detection of formaldehyde with nitrogen-doped graphene quantum dots and melamine. The sensing system was based on the different activated eff... A modulated photoluminescence nanosensor was developed for the quantitative detection of formaldehyde with nitrogen-doped graphene quantum dots and melamine. The sensing system was based on the different activated effects of melamine and hydrogen peroxide on the photoluminescence intensity of nitrogendoped graphene quantum dots. Under the optimal conditions, the modulated photoluminescence sensing system can be used to detect formaldehyde with a good linear relationship between the nitrogen-doped graphene quantum dots photoluminescence difference and the concentration of formaldehyde. The novel sensing system provided new directions for the detection of formaldehyde with high selectivity and quick response. 展开更多
关键词 NANOSENSOR modulated photoluminescence nitrogen-doped graphene quantum dots formaldehyde sensing
下载PDF
Nitrogen-doped TiO_(2)/Graphene Composites Synthesized via the Vapour-thermal Method
4
作者 TANG Hailong WANG Min +4 位作者 JU Tangtong DAI Yue WANG Meiling MA Yongqing ZHENG Ganhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第6期1105-1113,共9页
TiO_(2)/graphene composite was synthesized in the vapor environment of isopropanol.In order to improve the properties of composite,N-doped of TiO_(2)/graphene with different N/Ti molar ratio was prepared in the vapor ... TiO_(2)/graphene composite was synthesized in the vapor environment of isopropanol.In order to improve the properties of composite,N-doped of TiO_(2)/graphene with different N/Ti molar ratio was prepared in the vapor environment of deionized water and used urea as the source of nitrogen.The N-doped occupies in the interstitial sites of TiO_(2) lattice,substitutes for O element in TiO_(2) and for C element in graphene,and simultaneously changes the chemical states of Ti and O elements in TiO_(2).N-doped changes the morphology of TiO_(2) from nano-sheets to nanoparticles,accompanying with the decrease in specific surface area of the composites,first increases the particle size of TiO_(2) and then decreases,and alters the vibration modes of Ti-OTi.The composite with RN/Ti=2 exhibits the enhanced photocatalytic degradation performance to methylene blue,and the degradation rate increases from 7.7×10^(−2) min^(−1) for the undoped composite to 9.6×10^(−2) min^(−1). 展开更多
关键词 TiO_(2)/graphene vapor-thermal nitrogen-doped photocatalytic performance
下载PDF
Modified Nitrogen-Doped Graphene Electrocatalyst for Oxygen Reduction Reaction in Alkaline Fuel Cells
5
作者 Dureid Qazzazie Michaela Beckert +2 位作者 Rolf Mtilhaupt Olena Yurchenko Gerald Urban 《Journal of Energy and Power Engineering》 2015年第10期886-895,共10页
We report modified nitrogen-doped graphene (CN) as electrocatalyst for ORR (oxygen reduction reaction) in alkaline medium. CN was synthesized by a novel procedure based on graphite oxide thermally treated with cya... We report modified nitrogen-doped graphene (CN) as electrocatalyst for ORR (oxygen reduction reaction) in alkaline medium. CN was synthesized by a novel procedure based on graphite oxide thermally treated with cyanamide suitable for facile N-doping and large-scale production, whereas cyanamide was used as N-precursor. The structure of the material was characterized by TEM (transmission electron microscopy), SEM (scanning electron microscopy), Raman spectroscopy and XPS (X-ray photoelectron spectroscopy). Structural and electrochemical properties of CN were compared with those of non-modified graphene (TRGO (thermally reduced graphite oxide)). The electrochemical characterization of TRGO and CN in alkaline solution demonstrates enhanced electrocatalytic ORR activity and improved long-term stability for N-doped CN. Voltammetric studies confirmed that, oxygen reduction on CN rather follows four-electron pathway. Compared with commercial 20% PtC catalyst, CN is characterized by exceptional methanol crossover resistance and superb long-term operation stability. Owing to these factors, nitrogen-doped graphene has a great potential to be used as metal-free electrocatalyst in cathodes of alkaline fuel cells. 展开更多
关键词 nitrogen-doped graphene metal-free catalysis oxygen reduction reaction alkaline fuel cells.
下载PDF
Honeycomb-like MoCo alloy on 3D nitrogen-doped porous graphene for efficient hydrogen evolution reaction
6
作者 Lin-Ping Wang Kuang Li +7 位作者 Hua-Long Ding Le Xu Chen Huang Jiao-Jiao Zhou Cong-TaoWen Pei-Lin Zhang Wei-Wei Wang Lu-Yang Chen 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1072-1082,共11页
An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting.In this work,the honeycomb-like porous MoCo alloy on nitrogen-doped ... An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting.In this work,the honeycomb-like porous MoCo alloy on nitrogen-doped three-dimensional(3D)porous graphene substrate(Mo_(0.3)Co_(0.7)@NPG)has been synthesized from the annealing of layered double hydroxide(MoCo-LDH@NPG).Especially,the Mo_(0.3)Co_(0.7)@NPG exhibits low hydrogen evolution overpotential of 75 mV(10 mA·cm^(-2))and a Tafel slope of 69.9 mV·dec^(-1),which can be attributed to highly conductive NPG substrate,the unique nanostructure and the synergistic effect of Mo and Co.Moreover,the Mo_(0.3)Co_(0.7)@NPG can maintain the original morphology and high catalytic activity after 50-h stability test.This work proposes a general strategy to synthesize a multi-element alloy on conductive substrates with high porosity for electrocatalytic reaction. 展开更多
关键词 MoCo alloy Three-dimensional nitrogen-doped porous graphene Hydrogen evolution reaction(HER)
原文传递
Microspheres of graphene oxide coupled to N-doped Bi_2O_2CO_3 for visible light photocatalysis 被引量:1
7
作者 金瑞奔 蒋孝佳 +1 位作者 周仰原 赵建夫 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第5期760-768,共9页
Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic... Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic activity compared to the pure BOC and N‐BOC samples. With 1.0wt% GO, 62% NO removal was obtained with N‐BOC‐GO. The factors enhancing the photocatalytic performance were the high electron‐withdrawing ability and high conductivity of GO and improved visible light‐harvesting ability of N‐BOC‐GO with a 3D hierarchical architecture due to the surface scattering and reflecting(SSR) effect. An effective charge transfer from N‐BOC to GO was demonstrated by the much weakened photoluminescene intensity of the N‐BOC‐GO composite. This work highlights the potential application of GO‐based photocatalysts in air purification. 展开更多
关键词 graphene oxide nitrogen-doped bismuth subcarbonate Hydrothermal approach Activity enhancement Nitrogen oxide removal
下载PDF
Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium–sulfur batteries 被引量:12
8
作者 Jia-Le Shi Cheng Tang +2 位作者 Jia-Qi Huang Wancheng Zhu Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,mo... The introduction of nitrogen heteroatoms into carbon materials is a facile and efficient strategy to regulate their reactivities and facilitate their potential applications in energy conversion and storage. However,most of nitrogen heteroatoms are doped into the bulk phase of carbon without site selectivity, which significantly reduces the contacts of feedstocks with the active dopants in a conductive scaffold. Herein we proposed the chemical vapor deposition of a nitrogen-doped graphene skin on the 3D porous graphene framework and donated the carbon/carbon composite as surface N-doped grapheme(SNG). In contrast with routine N-doped graphene framework(NGF) with bulk distribution of N heteroatoms, the SNG renders a high surface N content of 1.81 at%, enhanced electrical conductivity of 31 S cm^(-1), a large surface area of 1531 m^2 g^(-1), a low defect density with a low I_D/I_G ratio of 1.55 calculated from Raman spectrum, and a high oxidation peak of 532.7 ℃ in oxygen atmosphere. The selective distribution of N heteroatoms on the surface of SNG affords the effective exposure of active sites at the interfaces of the electrode/electrolyte, so that more N heteroatoms are able to contact with oxygen feedstocks in oxygen reduction reaction or serve as polysulfide anchoring sites to retard the shuttle of polysulfides in a lithium–sulfur battery. This work opens a fresh viewpoint on the manipulation of active site distribution in a conductive scaffolds for multi-electron redox reaction based energy conversion and storage. 展开更多
关键词 nitrogen-doped graphene Chemical vapor deposition Oxygen reduction reaction Lithium-sulfur battery Porous carbon materials Exposure of active sites
下载PDF
TiN nanocrystal anchored on N-doped graphene as effective sulfur hosts for high-performance lithium-sulfur batteries
9
作者 Wenmiao Chen Hongchang Jin +4 位作者 Shuai Xie Huanyu Xie Junfa Zhu Hengxing Ji Li-Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期16-22,共7页
Lithium-sulfur(Li-S)batteries have become prospective candidates for next-generation energy storage owing to the high energy density and low cost.However,the sluggish kinetics of the electrochemical reaction and shutt... Lithium-sulfur(Li-S)batteries have become prospective candidates for next-generation energy storage owing to the high energy density and low cost.However,the sluggish kinetics of the electrochemical reaction and shuttle effect result in a rapid capacity decay.Herein,a titanium nitride nanocrystal/Ndoped graphene(TiN@NG)composite is developed to host elemental sulfur.The TiN nanoparticles decorated on graphene sheets attract Li polysulfides(LiPSx)and catalyze the electrochemical reduction and oxidation of LiPSx in the discharge and charge processes,respectively.These two effects effectively restrain the dissolution of the LiPSx and accelerate the electrochemical reactions,thereby,alleviating the shuttle effect.As a result,the cathode composed of TiN@NG/S delivers a remarkable reversible capacity(1390 mA h g^(-1) at 0.1 C)and excellent cycling performance(730 mA h g^(-1) after 300 cycles).We believe that this work can bring some inspiration for designing high-performance Li-S batteries. 展开更多
关键词 Titanium nitride nitrogen-doped graphene Catalysis effects Adsorption capability Lithium-sulfur batteries
下载PDF
Nitrogen-doped graphene supported Pd@PdO core- shell clusters for C-C coupling reactions 被引量:7
10
作者 Baojiang Jiang Sanzhao Song +6 位作者 Jianqiang Wang Ying Xie Wenyi Chu Hongfeng Li Hui Xu Chungui Tian Honggang Fu 《Nano Research》 SCIE EI CAS CSCD 2014年第9期1280-1290,共11页
The introduction of nitrogen significantly decreases the metal particle size and improves the performance of metal-based graphene-supported catalysts. In this work, the density functional theory is used to understand ... The introduction of nitrogen significantly decreases the metal particle size and improves the performance of metal-based graphene-supported catalysts. In this work, the density functional theory is used to understand the interaction between nitrogen-doped graphene and Pd@PdO clusters. Experiments show that small size Pd@PdO clusters (1-2 nm) can be grown uniformly on nitrogen-doped graphene sheets by a facile oxidation-reduction method. The nanoscale interaction relationship between nitrogen-doped graphene and Pd@PdO clusters is investigated through X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectra (XAS). The composite catalysts are applied in Suzuki-Miyaura reactions giving high yields and good structural stability. These results have potential impact in design and optimization of future high performance catalyst materials for cross coupling reactions. 展开更多
关键词 graphene nitrogen-doped Pd cluster catalyst Suzuki reaction
原文传递
CVD synthesis of nitrogen-doped graphene using urea 被引量:1
11
作者 ZHANG CanKun LIN WeiYi +4 位作者 ZHAO ZhiJuan ZHUANG PingPing ZHAN LinJie ZHOU YingHui CAI WeiWei 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第10期94-99,共6页
This work provides an effective low-cost synthesis and in-depth mechanistic study of high quality large-area nitrogen-doped graphene(NG) films. These films were synthesized using urea as nitrogen source and methane as... This work provides an effective low-cost synthesis and in-depth mechanistic study of high quality large-area nitrogen-doped graphene(NG) films. These films were synthesized using urea as nitrogen source and methane as carbon source, and were characterized by scanning electron microscopy(SEM), Raman spectroscopy and X-ray photoelectron spectroscopy(XPS). The N doping level was determined to be 3.72 at.%, and N atoms were suggested to mainly incorporated in a pyrrolic N configuration. All distinct Raman peaks display a shift due to the nitrogen-doping and compressive strain. The increase in urea concentration broadens the D and 2D peak's Full Width at Half Maximum(FWHM), due to the decrease of mean free path of phonons. The N-doped graphene exhibited an n-type doping behavior with a considerably high carrier mobility of about 74.1 cm2/(V s), confirmed by electrical transport measurements. 展开更多
关键词 nitrogen-doped graphene chemical vapor deposition Raman spectroscopy X-ray photoemission spectroscopy
原文传递
Pt_(1)/Ni_(6)Co_(1)layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping 被引量:1
12
作者 Baojun Long Peiyu Cao +9 位作者 Yuanmeng Zhao Qianqian Fu Yan Mo Yueming Zhai Juejing Liu Xingyi Lyu Tao Li Xiaofeng Guo Changsheng Shan Minghua Zeng 《Nano Research》 SCIE EI CSCD 2023年第1期318-324,共7页
The development of novel single-atom catalysts is important for highly efficient electrochemical catalysis and sensing.In this work,a novel Pt single atoms(SAs)supported on Ni_(6)Co_(1)layered double hydroxides/nitrog... The development of novel single-atom catalysts is important for highly efficient electrochemical catalysis and sensing.In this work,a novel Pt single atoms(SAs)supported on Ni_(6)Co_(1)layered double hydroxides/nitrogen-doped graphene(Pt_(1)/Ni_(6)Co_(1)LDHs/NG)was constructed for electrochemical enzyme-free catalysis and sensing towards glucose.The loading of Pt single atoms increases with doping of Co atoms that generate more anchoring sites for Pt SAs.The resulting Pt_(1)/Ni_(6)Co_(1)LDHs/NG exhibits low oxidative potential of 0.440 V with high sensitivity of 273.78μA·mM^(−1)·cm^(−2)toward glucose,which are 85 mV lower and 15 times higher than those of Ni(OH)_(2),respectively.Pt_(1)/Ni_(6)Co_(1)LDHs/NG also shows excellent selectivity and great stability during 5-week testing.Theoretical and experimental results show that the boosted performance of Pt_(1)/Ni_(6)Co_(1)LDHs/NG originates from its stronger binding energy with glucose and the synergistic effect of Pt SAs,Co doping,and NG.This work provides a general strategy of designing highly active SACs for extending their application in electrochemical sensing. 展开更多
关键词 single-atom catalysts electrochemical sensor layered double hydroxides nitrogen-doped graphene synergistic effect
原文传递
NG-MFCs协同FCDI处理含盐废水应用研究
13
作者 梁颖 张卫珂 +2 位作者 杨宏艳 焦琛 王佳玮 《水处理技术》 CAS CSCD 北大核心 2018年第3期83-86,共4页
以氮掺杂石墨烯(NG)催化微生物燃料电池(MFCs)的阴极,同时多级串并联方式连接MFCs与流动电极电容去离子(FCDI)装置,用以处理含盐废水。结果表明,NG-MFCs的产电脱氮性能明显提升,其最大输出电压为523 m V,NH_4^+-N的去除率达到92.7%;并... 以氮掺杂石墨烯(NG)催化微生物燃料电池(MFCs)的阴极,同时多级串并联方式连接MFCs与流动电极电容去离子(FCDI)装置,用以处理含盐废水。结果表明,NG-MFCs的产电脱氮性能明显提升,其最大输出电压为523 m V,NH_4^+-N的去除率达到92.7%;并联方式下的MFCs产电输出更加稳定,处理Na Cl质量浓度2 g/L的盐溶液,MFCs-FCDI装置的除盐率达到30%。因此,NG-MFCs以其输出能量FCDI进行除盐,可达到能源利用与污水处理的双重效果。 展开更多
关键词 微生物燃料电池(MFCs) 氮掺杂石墨烯(ng) 阴极 流动电极电容去离子(FCDI) 除盐
下载PDF
Identifying the key N species for electrocatalytic oxygen reduction reaction on N-doped graphene
14
作者 Yiyin Peng Zhaoyong Bian +1 位作者 Wenhai Zhang Hui Wang 《Nano Research》 SCIE EI CSCD 2023年第5期6642-6651,共10页
The state of nitrogen in nitrogen-doped graphene(NG)promoting the conversion of molecular oxygen to hydrogen peroxide was investigated.The oxygen reduction reaction(ORR)reactivity of graphitic-N,pyrrolic-N,pyridinic-N... The state of nitrogen in nitrogen-doped graphene(NG)promoting the conversion of molecular oxygen to hydrogen peroxide was investigated.The oxygen reduction reaction(ORR)reactivity of graphitic-N,pyrrolic-N,pyridinic-N in NG was predicted by density functional theory(DFT).A series of NG samples with different contents of these doped nitrogen types were prepared by the low-temperature thermal reduction method and used for the ORR evaluation.The H_(2)O_(2)yield,2e−ORR current efficiency,H_(2)O_(2)selectivity,electron transfer number(n)were systematically studied.The 2e−ORR selectivity was positively correlated with the N content,approaching 100%with increasing N content(0.40 V vs.reversible hydrogen electrode(RHE)),whereas the comparative energy efficiency showed a volcano-type trend related to N content,reaching a maximum of 94%.In addition,N species validation experiments proved the key role of pyrrolic-N in the synthesis of H_(2)O_(2).Compared with a pure graphene catalyst,further contaminant degradation studies on NG electrodes with different pyrrolic-N contents revealed that the lower pyrrolic-N the higher removal of p-nitrophenol(PNP).This work provides insight into the mechanism of ORR on metal-free catalysts and a facile approach to optimize this important environmental catalytic strategy. 展开更多
关键词 oxygen reduction ELECTROCATALYSIS nitrogen-doped graphene environmental remediation
原文传递
Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature 被引量:7
15
作者 Xiaoqiong Du Chao Liu +3 位作者 Cheng Du Ping Cai Gongzhen Cheng Wei Luo 《Nano Research》 SCIE EI CAS CSCD 2017年第8期2856-2865,共10页
The safe and efficient storage and release of hydrogen is one of the key technological challenges for the fuel cell-based hydrogen economy. Hydrazine monohydrate has attracted considerable attention as a safe and conv... The safe and efficient storage and release of hydrogen is one of the key technological challenges for the fuel cell-based hydrogen economy. Hydrazine monohydrate has attracted considerable attention as a safe and convent chemical hydrogen-storage material. Herein, we report the facile synthesis of NiPt-CeOx nanocomposites supported by three-dimensional nitrogen-doped graphene hydrogels (NGHs) via a simple one-step co-reduction synthesis method. These catalysts were composition-dependent for hydrogen generation from an alkaline solution of hydrazine. (NisPt5)I-(CeOx)0.B/NGH exhibited the highest catalytic activity, with 100% hydrogen selectivity and turnover frequencies of 408 h^-1 at 298 K and 3,064 h^-1 at 323 K. These superior catalytic performances are attributed to the electronic structure of the NiPt centers, which was modified by the electron interaction between NiPt and CeOx and the strong metal-support interaction between NiPt-CeOx and the NGH. 展开更多
关键词 nitrogen-doped graphene hydrogels NiPt-CeOx hydrogen storage HYDRAZINE
原文传递
Charge Engineering of Mo2C@Defect-Rich N-Doped Carbon Nanosheets for Efficient Electrocatalytic H2 Evolution 被引量:6
16
作者 Chunsheng Lei Wen Zhou +4 位作者 Qingguo Feng Yongpeng Lei Yi Zhang Yin Chen Jiaqian Qin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期155-164,共10页
Charge engineering of carbon materials with many defects shows great potential in electrocatalysis,and molybdenum carbide(Mo2C)is one of the noble-metal-free electrocatalysts with the most potential.Herein,we study th... Charge engineering of carbon materials with many defects shows great potential in electrocatalysis,and molybdenum carbide(Mo2C)is one of the noble-metal-free electrocatalysts with the most potential.Herein,we study the Mo2C on pyridinic nitrogen-doped defective carbon sheets(MoNCs)as catalysts for the hydrogen evolution reaction.Theoretical calculations imply that the introduction of Mo2C produces a graphene wave structure,which in some senses behaves like N doping to form localized charges.Being an active electrocatalyst,MoNCs demonstrate a Tafel slope as low as 60.6 mV dec-1 and high durability of up to 10 h in acidic media.Besides charge engineering,plentiful defects and hierarchical morphology also contribute to good performance.This work underlines the importance of charge engineering to boost catalytic performance. 展开更多
关键词 Molybdenum carbide nitrogen-doped CARBON NANOSHEETS CHARGE EngINEERIng graphene wave Hydrogen EVOLUTION reaction
下载PDF
Self-assembly of nitrogen-doped TiO_(2) with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane 被引量:16
17
作者 Wee-Jun Ong Lling-Lling Tan +2 位作者 Siang-Piao Chai Siek-Ting Yong Abdul Rahman Mohamed 《Nano Research》 SCIE EI CAS CSCD 2014年第10期1528-1547,共20页
Tailored synthesis of well-defined anatase TiO_(2)-based crystals with exposed{001}facets has stimulated incessant research interest worldwide due to their scientific and technological importance.Herein,anatase nitrog... Tailored synthesis of well-defined anatase TiO_(2)-based crystals with exposed{001}facets has stimulated incessant research interest worldwide due to their scientific and technological importance.Herein,anatase nitrogen-doped TiO_(2)(N-TiO_(2))nanoparticles with exposed{001}facets deposited on the graphene(GR)sheets(N-TiO_(2)-001/GR)were synthesized for the first time via a one-step solvothermal synthetic route using NH4F as the morphology-controlling agent.The experimental results exemplified that GR was uniformly covered with anatase N-TiO_(2) nanoparticles(10-17 nm),exposing the{001}facets.The percentage of exposed{001}facets in the N-TiO_(2)-001/GR nanocomposites was calculated to be ca.35%.Also,a red shift in the absorption edge and a strong absorption in the visible light range were observed due to the formation of Ti-O-C bonds,resulting in the successful narrowing of the band gap from 3.23 to 2.9 eV.The photocatalytic activities of the as-prepared photocatalysts were evaluated for CO_(2) reduction to produce CH,in the presence of water vapor under ambient temperature and atmospheric pressure using a low-power 15 W energy-saving daylight lamp as the visible light source--in contrast to the most commonly employed high-power xenon lamps--which rendered the process economically and practically feasible.Among all the studied photocatalysts,the N-TiO_(2)-001/GR nanocomposites exhibited the greatest CH4 yield of 3.70 p-mol'gcatalyst 1,approxi-mately 11-fold higher activity than the TiO_(2)-001.The enhancement of photocatalyfic performance was ascribed to the effective charge anti-recombination of graphene,high absorption of visible light region relative to the{101}facets.and high catalytic activity of{001}facets. 展开更多
关键词 photocatalysis nitrogen-doped TiO_(2) {001}facet acid treated solvent exfoliated graphene carbon dioxide reduction visible light
原文传递
Nitrogen-doped graphene nanosheets as reactive water purification membranes 被引量:5
18
作者 Yanbiao Liu Ling Yu +1 位作者 Choon Nam Ong Jianping Xie 《Nano Research》 SCIE EI CAS CSCD 2016年第7期1983-1993,共11页
Oxidation of organic pollutants by sulfate radicals produced via activation of persulfate has emerged as a promising advanced oxidation technology to address various challenging environmental issues. The development o... Oxidation of organic pollutants by sulfate radicals produced via activation of persulfate has emerged as a promising advanced oxidation technology to address various challenging environmental issues. The development of an effective, environmentally-friendly, metal-free catalyst is the key to this technology. Additionally, a supported catalyst design is more advantageous than conventional suspended powder catalysts from the point of view of mass transfer and practical engineering applications (e.g. post-use separation). In this study, a metal-free N-doped reduced graphene oxide (N-rGO) catalyst was prepared via a facile hydrothermal method. N-rGO filters were then synthesized by facile vacuum filtration, such that water can flow through nanochannels within the filters. Various advanced characterization techniques were employed to obtain structural and compositional information of the as-synthesized N-rGO filters. An optimized phenol oxidative flux of 0.036 +_ 0.002 mmol.h ~ was obtained by metal-flee catalytic activation of persulfate at an influent persulfate concentration of 1.0 mmol-L 1 and filter weight of 15 rag, while a N-free rGO filter demonstrated negligible phenol oxidation capability under similar conditions. Compared to a conventional batch system, the flow-through design demonstrates obviously enhanced oxidation kinetics (0.036 vs. 0.010 retool-h-I), mainly due to the liquid flow through the filter leading to convection-enhanced transfer of the target molecule to the filter active sites. Overall, the results exemplified the advantages of organic compound removal by catalytic activation of persulfate using a metal-free catalyst in flow- through mode, and demonstrated the potential of N-rGO filters for practical environmental applications. 展开更多
关键词 persulfate activation nitrogen-doped graphene phenol oxidation convective flow batch system
原文传递
Enhanced formaldehyde sensitivity of two-dimensional mesoporous SnO_(2) by nitrogen-doped graphene quantum dots 被引量:5
19
作者 Zhen-Lu Chen Ding Wang +1 位作者 Xian-Ying Wang Jun-He Yang 《Rare Metals》 SCIE EI CAS CSCD 2021年第6期1561-1570,共10页
Formaldehyde(HCHO) is widely known as an indoor air pollutant,and the monitoring of the gas has significant importance.However,most HCHO sensing materials do not have low detection limits and operate at high temperatu... Formaldehyde(HCHO) is widely known as an indoor air pollutant,and the monitoring of the gas has significant importance.However,most HCHO sensing materials do not have low detection limits and operate at high temperatures.Herein,two-dimensional(2D) mesoporous ultrathin SnO_(2) modified with nitrogen-doped graphene quantum dots(N-GQDs) was synthesized.The N-GQDs/SnO_(2) nanocomposite demonstrated high efficiency for HCHO detection.With the addition of 1.00 wt%N-GQDs,the response(Ra/Rg) of SnO_(2) gas sensor increased from 120 to 361 at 60℃ for the detection of 10×10^(-6) HCHO.In addition,the corresponding detection limit was as low as 10×10^(-9).Moreover,the sensor exhibited excellent selectivity and stability for the detection of HCHO.The enhanced sensing performance was attributed to both the large specific surface area of SnO_(2) and electron regulation of N-GQDs.Therefore,this study presents a novel HCHO sensor,and it expands the research and application potential of GQDs nanocomposites. 展开更多
关键词 nitrogen-doped graphene quantum dots Formaldehyde sensor Two-dimensional SnO_(2) Nanocomposites
原文传递
Three-dimensional nitrogen-doped graphene hydrogel supported Co-CeOx nanoclusters as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane 被引量:3
20
作者 Yana Men Jun Su +4 位作者 Chaozhang Huang Lijing Liang Ping Cai Gongzhen Cheng Wei Luo 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第11期1671-1674,共4页
The development of highly active noble-metal-flee catalysts for catalytic hydrolysis of ammonia borane is mandatory for its application in hydrogen storage. Herein, Co-CeOx nanoclusters have been successfully anchored... The development of highly active noble-metal-flee catalysts for catalytic hydrolysis of ammonia borane is mandatory for its application in hydrogen storage. Herein, Co-CeOx nanoclusters have been successfully anchored on a three-dimensional nitrogen-doped graphene hydrogel (NGH) by a simple coreduction method and further used as efficient catalysts to catalytic hydrolysis of ammonia borane at room temperature. Thanks to the strong synergistic electronic effect between Co and CeOx, as well as the strong metal-support interaction between Co-CeOx and 3D NGH, the as-synthesized Co-(CeOx)0.91/NGH catalyst exhibits superior catalytic activity toward hydrolysis of ammonia borane, with the turnover frequency (TOF) value of 79.5 min 1, which is almost 13 times higher than that of Co]NGH, and higher than most of the reported noble-metal-free catalysts. 展开更多
关键词 nitrogen-doped graphene hydrogel Co-CeOx Hydrogen storage Ammonia borane Noble-metal-free
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部