The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosp...The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.展开更多
Drought is a bottleneck for worldwide soybean production which is getting more serious as the climate continues to worsen. Dehydration responsive element binding(DREB) is a kind of transcription factor that regulate...Drought is a bottleneck for worldwide soybean production which is getting more serious as the climate continues to worsen. Dehydration responsive element binding(DREB) is a kind of transcription factor that regulates the expression of stress tolerance-related genes in response to drought, high salinity and cold stress in plant. Soybean with DREB gene possesses the drought resisting capability which is helpful to increase the yield. However, the potential risk of genetically modified plants(GMPs) on soil microbial community is still in debate. In order to understand the effects of transgenic DREB soybean on the nitrogen-fixing bacteria, the diversity of nif H gene in pot experiments planted transgenic soybean and near-isogenic nontransgenic soybean under normal water condition and drought stress condition was analyzed by PCR-DGGE and sequence analysis. The results showed that transgenic soybean under normal water condition decrease the diversity of the nitrogen-fixing bacteria in the seeding stage and flowering stage, but had no notable effect in other stages. Under drought stress, transgenic soybean reduced the diversity of the nitrogen-fixing bacteria in the flowering stage, but had no notable effects on other stages. Phylogenic analysis revealed that g7, g13, g15 and g19 had a close relationship with Alphaproteobacteria, g12 had a close relationship with Azonexus, others were related to Betaproteobacteria and Burkholderia.展开更多
Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in c...Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat.展开更多
The purpose of the paper was to study the effects of cellulolytic bacteria(CB)mixed with nitrogen-fixing bacteria(NFB)on fermentation in vitro.Nine CB strains and seven NFB strains were isolated from numen fluid of th...The purpose of the paper was to study the effects of cellulolytic bacteria(CB)mixed with nitrogen-fixing bacteria(NFB)on fermentation in vitro.Nine CB strains and seven NFB strains were isolated from numen fluid of three Holstein cows.Based onhigher activity of cellulose or nitrogenase,three CB types[CB-2(KT725624),CB-5(KT725623)and CB-6(KT725622)]and one NFB type[NFB-3(KT735054)]were screened out,respectively.Two parts were included in this study.The first part explored the optimal mixed ratio of CB to NFB through inoculating filter paper medium with the bacteria of 2×10^5 cfu·mL^-1.According to CMCase and FPase activities in the medium,the ratio of 4 to 1 was proven to be more effective.In the second part,rumen fermentation in vitro was conducted at 4:1 of CB to NFB,aiming at studying the effects of mixed bacteria.Six groups were classified,namely,control group(no bacteria),Group 1(CB-2+NFB-3),Group 2(CB-5+NFB-3),Group 3(CB-6+NFB-3),Group 4(NFB-3)and Group 5(CB-6).All the experimental groups had the same amount of bacteria(4×10^6 cfu·mL^-1)in the fermentation liquid.Samples were collected at 2,4,8,12 and 24 h of incubation.Compared with the groups with CB or NFB alone,gas production,dry matter degradability and bacterial protein expressions in the mixed groups increased.However,NH3-N concentration decreased and p H was stable.Meanwhile,related values among three mixed groups were significantly different;values in Group 2 were the best.展开更多
Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The patho...Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The pathogenesis of NAFLD is closely associated with disturbances in the gut micr-obiota and impairment of the intestinal barrier.Non-gut commensal flora,particularly bacteria,play a pivotal role in the progression of NAFLD.Notably,Porphyromonas gingivalis,a principal bacterium involved in periodontitis,is known to facilitate lipid accumulation,augment immune responses,and induce insulin resistance,thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD.The influence of oral microbiota on NAFLD via the“oral-gut-liver”axis is gaining recognition,offering a novel perspective for NAFLD management through microbial imbalance correction.This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms,emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain...Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain aerobic non symbiotic nitrogen-fixing bacteria from coffee rhizosphere. The application of those bacteria was expected to enhance coffee seedling growth. Sixty four aerobic nitrogen-fixing bacterial isolates were isolated from coffee plants rhizosphere from Jember, East Java using several nitrogen free medium, such as Ashby, malate acid, and fahreus agar. The nitrogen fixation ability of the isolates was determined by measuring their ability in pellicle formation on semi solid medium and ammonium excretion on growth medium. Ab Kws.l, Asm E6s.3.a, Asm Bsl.1, and Asm E6s were the isolates which showed the best performance on nitrogen fixation with excreted ammonium concentration ranged from 129.6 up to 239.8 pM/mg dry weight cell. Acetylene reduction assay was used to detect nitrogenase activity. Ab Kws.1 was the isolate which had the highest nitrogenase activity (7.4 mmol N2 fixed/gram dry weight cell/hour). Inoculation of the four best isolates onto Robusta coffee seedling positively enhanced the seedling growth in this green house experiment. Based on the results of Becton Dickinson's (BD) PhoenixTM Automated Microbiology System biochemical tests, Asm Bls.l isolates has similarities with Achromobacter sp., Asm E6s.l and Asm E6s.3.a had similarities with Stenotrophomonas maltophilia, while Ab Kws. 1 had similarities with Leifsonia aquatica.展开更多
The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio ...The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) of different saline soils were studied and compared. Results show that different saline soils exhibit various physico-chemical properties. Saline-sodic soils in Songnen Plain are ameliorated by using nitrogen-fixing blue-green algae 888 in the experiment. It is indicated that cyanobacteria 888 can grow in saline and alkaline soils, and the conditions favorable for its growth are soil moisture of 50% and dry algae inoculation at 0.03 mg/cm2. The main actions of nitrogen-fixing cyanobacteria are keeping the adsorbability of rubber sheath for sodium, increasing the organic matter content of the soils and decreasing the pH and the degree of salinity in the soils. But the arid climate and soil depth are the main factors that limit the restoration of saline and alkaline soils.展开更多
The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological technique...The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections.展开更多
Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and...Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria;secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale;and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibrio cholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds.展开更多
Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect ...Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles.展开更多
Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, hos...Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.展开更多
Endosymbiotic bacteria of insects can facilitate host expansion into novel niches by providing their host with a fitness benefit such as vitamins or amino acids that are otherwise lacking in their hosts’diet.This clo...Endosymbiotic bacteria of insects can facilitate host expansion into novel niches by providing their host with a fitness benefit such as vitamins or amino acids that are otherwise lacking in their hosts’diet.This close association can lead to cospeciation between insects and their symbionts;however,the symbionts’small genome size leaves it susceptible to genome derogation which can result in symbiont replacement.Here,we screen chewing lice infesting shorebirds and terns to see what endosymbiotic bacteria are present,and build a summary phylogeny that includes louse endosymbiont sequences from this study as well as those from other louse genera,insects and bacteria strains from GenBank.We found a Sodalis-allied endosymbiont in Carduiceps,Lunaceps,Quadraceps,and Saemundssonia,as well as symbionts belonging to the family Enterobacteriaceae in Lunaceps,and Quadraceps.No louse species were host to both endosymbionts;however,the birds Kentish Plover(Charadrius alexandrinus)and Greater Crested Tern(Thalasseus bergii)were host to two genera of lice,each of which was infested with a different group of endosymbionts.In the summary phylogeny the endosymbionts from shorebirds,and tern lice did not form a monophyletic group,and therefore likely acquired their bacterial endosymbionts multiple times.展开更多
Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the ...Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.展开更多
In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possibl...In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium.展开更多
Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have...Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have become a hot research topic in growth improvement in aquaculture.The endogenous probiotic bacteria from intestines of Macrobrachium rosenbergii(giant river prawn)was explored for their probiotic potential,from which 367 bacterial strains were isolated from the intestine of M.rosenbergii.After 16 S rDNA sequence analysis,234 isolates were identified as Lactococcus garvieae,which accounted for 63.76%of the total number of culturable intestinal bacteria,suggesting that this bacterium was the main component of the microbiota.Furthermore,to reveal the probiotic properties of L.garvieae,this isolated bacterial strain was characterized morphologically,physiologically,and biochemically.Its enzyme production capacity,bacteriostatic activity,and resistance to acid,high temperature,and pH,were assessed.In vitro experiments showed that the L.garvieae(No.C 6 a 2)had a fast growth rate and entered the logarithmic phase rapidly.Besides,it had characteristics of acid-production and resistance,enzyme-producing capacity,and strong antibacterial activity against pathogenic Staphylococc us aureus,Aeromonas hydrophila,and Aeromonas veronii.However,it lacked the ability to tolerate high temperature.Our results provide novel data to deepen our understanding of the intestinal bacteria structure of M.rosenbergii and valuable information for probiotic screening and the application for M.rosenbergii.展开更多
In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization ...In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.展开更多
Honeybees (Apis mellifera) are important pollinators of flowering plants and agricultural crops contributing annually to billions of dollars in revenues to crop production. Honeybees have an average lifespan between 8...Honeybees (Apis mellifera) are important pollinators of flowering plants and agricultural crops contributing annually to billions of dollars in revenues to crop production. Honeybees have an average lifespan between 8 weeks to 5 years. Dead honeybees are abundantly available in beehives and can be utilized as an alternative source to synthesize nanoparticles. In recent years, biologically synthesized nanoparticles have been preferred over their chemical counterparts. However, honeybee-based-green synthesis of nanoparticles has not been explored yet. Herein, we report the biosynthesis of silver nanoparticles from honeybees and its antibacterial activity. The synthesis of silver nanoparticles was monitored visually through a gradual change in color. Furthermore, the biosynthesized nanoparticles were confirmed and characterized by UV-visible spectroscopy. Scanning Electron Microscope was utilized to analyze the average size and morphologies of the biosynthesized nanoparticles. Subsequently, the antibacterial potential of the biosynthesized silver nanoparticles was tested against selected Gram-positive and Gram-negative bacterial strains. It was found that a distinct color change from yellow to brown in the reaction solution suggested the formation of silver nanoparticles. The biosynthesized nanoparticles exhibited absorption maxima at 430 nm. The SEM analysis confirmed the spherical and cuboidal shape of the biosynthesized silver nanoparticles with a size range between 10 - 40 nm. Furthermore, the biosynthesized silver nanoparticles exhibited strong antimicrobial potential against tested Gram-positive and Gram-negative bacteria strains by aggregating on the cell surface. This study showcases the biomedical and agricultural applications of biosynthesized silver nanoparticles from honeybee wings. .展开更多
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba...Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.展开更多
文摘The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.
基金Supported by the Special Scientific Fund for Non-profit Environmental Industry(2010467038)
文摘Drought is a bottleneck for worldwide soybean production which is getting more serious as the climate continues to worsen. Dehydration responsive element binding(DREB) is a kind of transcription factor that regulates the expression of stress tolerance-related genes in response to drought, high salinity and cold stress in plant. Soybean with DREB gene possesses the drought resisting capability which is helpful to increase the yield. However, the potential risk of genetically modified plants(GMPs) on soil microbial community is still in debate. In order to understand the effects of transgenic DREB soybean on the nitrogen-fixing bacteria, the diversity of nif H gene in pot experiments planted transgenic soybean and near-isogenic nontransgenic soybean under normal water condition and drought stress condition was analyzed by PCR-DGGE and sequence analysis. The results showed that transgenic soybean under normal water condition decrease the diversity of the nitrogen-fixing bacteria in the seeding stage and flowering stage, but had no notable effect in other stages. Under drought stress, transgenic soybean reduced the diversity of the nitrogen-fixing bacteria in the flowering stage, but had no notable effects on other stages. Phylogenic analysis revealed that g7, g13, g15 and g19 had a close relationship with Alphaproteobacteria, g12 had a close relationship with Azonexus, others were related to Betaproteobacteria and Burkholderia.
基金financed by grants from the Natural Science Foundation of Jiangsu Province in China (BK20221515)the National Natural Science Foundation of China (32172266)。
文摘Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat.
基金Supported by China Agriculture Research System(CARS-37)Northeast Agricultural University Innovation Funding for Postgraduate(yjscx14007)。
文摘The purpose of the paper was to study the effects of cellulolytic bacteria(CB)mixed with nitrogen-fixing bacteria(NFB)on fermentation in vitro.Nine CB strains and seven NFB strains were isolated from numen fluid of three Holstein cows.Based onhigher activity of cellulose or nitrogenase,three CB types[CB-2(KT725624),CB-5(KT725623)and CB-6(KT725622)]and one NFB type[NFB-3(KT735054)]were screened out,respectively.Two parts were included in this study.The first part explored the optimal mixed ratio of CB to NFB through inoculating filter paper medium with the bacteria of 2×10^5 cfu·mL^-1.According to CMCase and FPase activities in the medium,the ratio of 4 to 1 was proven to be more effective.In the second part,rumen fermentation in vitro was conducted at 4:1 of CB to NFB,aiming at studying the effects of mixed bacteria.Six groups were classified,namely,control group(no bacteria),Group 1(CB-2+NFB-3),Group 2(CB-5+NFB-3),Group 3(CB-6+NFB-3),Group 4(NFB-3)and Group 5(CB-6).All the experimental groups had the same amount of bacteria(4×10^6 cfu·mL^-1)in the fermentation liquid.Samples were collected at 2,4,8,12 and 24 h of incubation.Compared with the groups with CB or NFB alone,gas production,dry matter degradability and bacterial protein expressions in the mixed groups increased.However,NH3-N concentration decreased and p H was stable.Meanwhile,related values among three mixed groups were significantly different;values in Group 2 were the best.
文摘Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The pathogenesis of NAFLD is closely associated with disturbances in the gut micr-obiota and impairment of the intestinal barrier.Non-gut commensal flora,particularly bacteria,play a pivotal role in the progression of NAFLD.Notably,Porphyromonas gingivalis,a principal bacterium involved in periodontitis,is known to facilitate lipid accumulation,augment immune responses,and induce insulin resistance,thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD.The influence of oral microbiota on NAFLD via the“oral-gut-liver”axis is gaining recognition,offering a novel perspective for NAFLD management through microbial imbalance correction.This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms,emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
文摘Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain aerobic non symbiotic nitrogen-fixing bacteria from coffee rhizosphere. The application of those bacteria was expected to enhance coffee seedling growth. Sixty four aerobic nitrogen-fixing bacterial isolates were isolated from coffee plants rhizosphere from Jember, East Java using several nitrogen free medium, such as Ashby, malate acid, and fahreus agar. The nitrogen fixation ability of the isolates was determined by measuring their ability in pellicle formation on semi solid medium and ammonium excretion on growth medium. Ab Kws.l, Asm E6s.3.a, Asm Bsl.1, and Asm E6s were the isolates which showed the best performance on nitrogen fixation with excreted ammonium concentration ranged from 129.6 up to 239.8 pM/mg dry weight cell. Acetylene reduction assay was used to detect nitrogenase activity. Ab Kws.1 was the isolate which had the highest nitrogenase activity (7.4 mmol N2 fixed/gram dry weight cell/hour). Inoculation of the four best isolates onto Robusta coffee seedling positively enhanced the seedling growth in this green house experiment. Based on the results of Becton Dickinson's (BD) PhoenixTM Automated Microbiology System biochemical tests, Asm Bls.l isolates has similarities with Achromobacter sp., Asm E6s.l and Asm E6s.3.a had similarities with Stenotrophomonas maltophilia, while Ab Kws. 1 had similarities with Leifsonia aquatica.
基金Sponsored by the Major State Scientific and Technological Projects of Water Pollution Control and Treatment(Grant No.2008ZX07208-005)
文摘The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) of different saline soils were studied and compared. Results show that different saline soils exhibit various physico-chemical properties. Saline-sodic soils in Songnen Plain are ameliorated by using nitrogen-fixing blue-green algae 888 in the experiment. It is indicated that cyanobacteria 888 can grow in saline and alkaline soils, and the conditions favorable for its growth are soil moisture of 50% and dry algae inoculation at 0.03 mg/cm2. The main actions of nitrogen-fixing cyanobacteria are keeping the adsorbability of rubber sheath for sodium, increasing the organic matter content of the soils and decreasing the pH and the degree of salinity in the soils. But the arid climate and soil depth are the main factors that limit the restoration of saline and alkaline soils.
文摘The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections.
文摘Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria;secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale;and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibrio cholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds.
文摘Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles.
文摘Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.
基金supported by the National Natural Science Foundation of China(grants 32001098&31961123003)the Introduction of Full-Time High-Level Talent Fund of the Institute of Zoology,Guangdong Academy of Sciences(grant GIABR-GJRC201701)+2 种基金GDAS Special Project of Science and Technology Development(2022GDASZH-2022010106 and 2019GDASYL-0203001)the Foreign Young Talent Plan(QN20200130012)the Pearl River Talent Recruitment Program of Guangdong Province(Grant,2019QN01N968).
文摘Endosymbiotic bacteria of insects can facilitate host expansion into novel niches by providing their host with a fitness benefit such as vitamins or amino acids that are otherwise lacking in their hosts’diet.This close association can lead to cospeciation between insects and their symbionts;however,the symbionts’small genome size leaves it susceptible to genome derogation which can result in symbiont replacement.Here,we screen chewing lice infesting shorebirds and terns to see what endosymbiotic bacteria are present,and build a summary phylogeny that includes louse endosymbiont sequences from this study as well as those from other louse genera,insects and bacteria strains from GenBank.We found a Sodalis-allied endosymbiont in Carduiceps,Lunaceps,Quadraceps,and Saemundssonia,as well as symbionts belonging to the family Enterobacteriaceae in Lunaceps,and Quadraceps.No louse species were host to both endosymbionts;however,the birds Kentish Plover(Charadrius alexandrinus)and Greater Crested Tern(Thalasseus bergii)were host to two genera of lice,each of which was infested with a different group of endosymbionts.In the summary phylogeny the endosymbionts from shorebirds,and tern lice did not form a monophyletic group,and therefore likely acquired their bacterial endosymbionts multiple times.
文摘Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.
基金supported by the Russian Science Foundation(Grant No.22-14-20001).
文摘In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium.
基金Supported by the National Natural Science Foundation of China(No.32273121)the Natural Science Foundation of Zhejiang Province(No.LGN22C190019)+1 种基金the Huzhou Natural Science Foundation(No.2021YZ08)the earmarked fund for the China Agriculture Research System of MOF and MARA(No.CARS-48)。
文摘Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have become a hot research topic in growth improvement in aquaculture.The endogenous probiotic bacteria from intestines of Macrobrachium rosenbergii(giant river prawn)was explored for their probiotic potential,from which 367 bacterial strains were isolated from the intestine of M.rosenbergii.After 16 S rDNA sequence analysis,234 isolates were identified as Lactococcus garvieae,which accounted for 63.76%of the total number of culturable intestinal bacteria,suggesting that this bacterium was the main component of the microbiota.Furthermore,to reveal the probiotic properties of L.garvieae,this isolated bacterial strain was characterized morphologically,physiologically,and biochemically.Its enzyme production capacity,bacteriostatic activity,and resistance to acid,high temperature,and pH,were assessed.In vitro experiments showed that the L.garvieae(No.C 6 a 2)had a fast growth rate and entered the logarithmic phase rapidly.Besides,it had characteristics of acid-production and resistance,enzyme-producing capacity,and strong antibacterial activity against pathogenic Staphylococc us aureus,Aeromonas hydrophila,and Aeromonas veronii.However,it lacked the ability to tolerate high temperature.Our results provide novel data to deepen our understanding of the intestinal bacteria structure of M.rosenbergii and valuable information for probiotic screening and the application for M.rosenbergii.
文摘In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle.
文摘Honeybees (Apis mellifera) are important pollinators of flowering plants and agricultural crops contributing annually to billions of dollars in revenues to crop production. Honeybees have an average lifespan between 8 weeks to 5 years. Dead honeybees are abundantly available in beehives and can be utilized as an alternative source to synthesize nanoparticles. In recent years, biologically synthesized nanoparticles have been preferred over their chemical counterparts. However, honeybee-based-green synthesis of nanoparticles has not been explored yet. Herein, we report the biosynthesis of silver nanoparticles from honeybees and its antibacterial activity. The synthesis of silver nanoparticles was monitored visually through a gradual change in color. Furthermore, the biosynthesized nanoparticles were confirmed and characterized by UV-visible spectroscopy. Scanning Electron Microscope was utilized to analyze the average size and morphologies of the biosynthesized nanoparticles. Subsequently, the antibacterial potential of the biosynthesized silver nanoparticles was tested against selected Gram-positive and Gram-negative bacterial strains. It was found that a distinct color change from yellow to brown in the reaction solution suggested the formation of silver nanoparticles. The biosynthesized nanoparticles exhibited absorption maxima at 430 nm. The SEM analysis confirmed the spherical and cuboidal shape of the biosynthesized silver nanoparticles with a size range between 10 - 40 nm. Furthermore, the biosynthesized silver nanoparticles exhibited strong antimicrobial potential against tested Gram-positive and Gram-negative bacteria strains by aggregating on the cell surface. This study showcases the biomedical and agricultural applications of biosynthesized silver nanoparticles from honeybee wings. .
基金This work was supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province,China(2022SDZG07)+3 种基金the Key Areas Research and Development Programs of Guangdong Province,China(2022B0202060005)the STICGrantof China(SGDX20210823103535007)the Major Program of Guangdong Basic and Applied Research,China(2019B030302006)the Natural Science Foundation of Guangdong Province,China(2021A1515010826and 2020A1515110261).
文摘Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.