An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the...An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).展开更多
High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields.A new current sensor based on diamond nitrogen-vacan...High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields.A new current sensor based on diamond nitrogen-vacancy(NV)color center magnetic measurement method is proposed to realize the accurate measurement of current.This new current method can greatly improve the accuracy of current measurement.Experiments show that the linearity of the current sensor based on diamond NV color center can reach up to 33 ppm,which is superior to other current sensors and solves the problem of low linearity.When the range of input current is 5-40 A,the absolute error of the calculated current is less than 51μA,and the relative error is 2.42×10^(-6) at 40 A.Combined with the research content and results of the experiment,the application of the current sensor in the field of current precision measurement is prospected.展开更多
The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena.In situ sensing of spin and charge properties ...The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena.In situ sensing of spin and charge properties under high pressure is crucially important but remains technically challenging.While the nitrogen-vacancy(NV)center in diamond is a promising quantum sensor under extreme conditions,its spin dynamics and the quantum control of its spin states under high pressure remain elusive.In this study,we demonstrate coherent control,spin relaxation,and spin dephasing measurements for ensemble NV centers up to 32.8 GPa.With this in situ quantum sensor,we investigate the pressure-induced magnetic phase transition of a micron-size permanent magnet Nd2Fe14B sample in a diamond anvil cell,with a spatial resolution of ~2μm,and sensitivity of ~20 μT/Hz1/2. This scheme could be generalized to measure other parameters such as temperature,pressure and their gradients under extreme conditions.This will be beneficial for frontier research of condensed matter physics and geophysics.展开更多
Magnetic field measurement plays an extremely important role in material science,electronic en-gineering,power system and even industrial fields.In particular,magnetic field measurement provides a safe and reliable to...Magnetic field measurement plays an extremely important role in material science,electronic en-gineering,power system and even industrial fields.In particular,magnetic field measurement provides a safe and reliable tool for industrial non-destructive testing.The sensitivity of magnetic field measurement deter-mines the highest level of detection.The diamond nitrogen-vacancy(NV)color center is a new type of quan-tum sensor developed in recent years.The external magnetic field will cause Zeeman splitting of the ground state energy level of the diamond NV color center.Optical detection magnetic resonance(ODMR),using a mi-crowave source and a lock-in amplifier to detect the resonant frequency of the NV color center,and finally the change of the resonant frequency can accurately calculate the size of the external magnetic field and the sensi-tivity of the external magnetic field change.In the experiment,a diamond containing a high concentration of NV color centers is coupled with an optical fiber to realize the preparation of a magnetic field scanning probe.Then,the surface cracks of the magnetized iron plate weld are scanned,and the scanning results are drawn into a two-dimensional magnetic force distribution map,according to the magnetic field gradient change of the magnetic force distribution map,the position and size of the crack can be judged very accurately,which pro-vides a very effective diagnostic tool for industrial safety.展开更多
Determination and control of nitrogen-vacancy(NV)centers play an important role in sensing the vector field by using their quantum information.To measure orientation of NV centers in a diamond particle attached to a t...Determination and control of nitrogen-vacancy(NV)centers play an important role in sensing the vector field by using their quantum information.To measure orientation of NV centers in a diamond particle attached to a tapered fiber rapidly,we propose a new method to establish the direction cosine matrix between the lab frame and the NV body frame.In this method,only four groups of the ODMR spectrum peaks shift data need to be collected,and the magnetic field along±Z and±Y in the lab frame is applied in the meantime.We can also control any NV axis to rotate to the X,Y,Z axes in the lab frame according to the elements of this matrix.The demonstration of the DC and microwave magnetic field vector sensing is presented.Finally,the proposed method can help us to perform vector magnetic field sensing more conveniently and rapidly.展开更多
Single-photon flux is one of the crucial properties of nitrogen vacancy (NV) centers in diamond for its application in quantum information techniques. Here we fabricate diamond conical nanowires to enhance the singl...Single-photon flux is one of the crucial properties of nitrogen vacancy (NV) centers in diamond for its application in quantum information techniques. Here we fabricate diamond conical nanowires to enhance the single-photon count rate. Through the interaction between tightly confined optical mode in nanowires and NV centers, the single-photon lifetime is much shortened and the collection efficiency is enhanced. As a result, the detected single-photon rate can be at 564 kcps, and the total detection coefficient can be 0.8%, which is much higher than that in bulk diamond. Such a nanowire single-photon device with high photon flux can be applied to improve the fidelity of quantum computation and the precision of quantum sensors.展开更多
Nitrogen-vacancy(NV)centers in a bulk diamond are often employed to realize measurement of multiple physical quantities,which depends on orientation information of NV axis.We report a fast and effective method to dete...Nitrogen-vacancy(NV)centers in a bulk diamond are often employed to realize measurement of multiple physical quantities,which depends on orientation information of NV axis.We report a fast and effective method to determine the orientation of NV axis with the aid of a static magnetic field.By measuring the optically detected magnetic resonance spectra,we can precisely extract the polar angle information between the NV axis and the known magnetic field.Combining with the polar angle information of different kinds of NV centers,we employ the Nelder-Mead algorithm to get the optimal solution of the orientation of NV axis.This method is simple and efficient,and is easily applied in NV-based quantum sensing.展开更多
This work⑴was additionally supported by the National Key R&D Program of China under Grant No 2018YFA0305700.The financial acknowledgment section should be corrected as follows:Supported by the National Basic Rese...This work⑴was additionally supported by the National Key R&D Program of China under Grant No 2018YFA0305700.The financial acknowledgment section should be corrected as follows:Supported by the National Basic Research Program of China under Grant No 2015CB921103,the National Key R&D Program of China under Grant Nos 2016YFA0401503 and 2018YFA0305700,the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000.展开更多
Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous ...Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous materials,which significantly affects the performance of diamond-based devices.Herein,combing experiments and theoretical calculations,taking diamond–iron(Fe)interface as a prototype,the counter-diffusion mechanism of Fe/carbon atoms has been established.Surprisingly,it is identified that Fe and diamond first form a coherent interface,and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites.Meanwhile,the relaxed carbon atoms diffuse into the Fe lattice,forming Fe_(3)C.Moreover,graphite is observed at the Fe_(3)C surface when Fe_(3)C is over-saturated by carbon atoms.The present findings are expected to offer new insights into the atomic mechanism for diamondferrous material's interfacial reactions,benefiting diamond-based device applications.展开更多
We design proposals to generate a remote Greenberger-Horne-Zeilinger(GHZ) state and a W state of nitrogenvacancy(NV) centers coupled to microtoroidal resonators(MTRs) through noisy channels by utilizing time-bin...We design proposals to generate a remote Greenberger-Horne-Zeilinger(GHZ) state and a W state of nitrogenvacancy(NV) centers coupled to microtoroidal resonators(MTRs) through noisy channels by utilizing time-bin encoding processes and fast-optical-switch-based polarization rotation operations.The polarization and phase noise induced by noisy channels generally affect the time of state generation but not its success probability and fidelity.Besides,the above proposals can be generalized to n-qubit between two or among n remote nodes with success probability unity under ideal conditions.Furthennore,the proposals are robust for regular noise-changeable channels for the n-node case.This method is also useful in other remote quantum information processing tasks through noisy channels.展开更多
We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In prev...We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ⅰb diamond; or 13C nuclear spin bath for type-Ⅱa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time (T2 ) of about 400#8. However, in a high-purity type-Ⅱa diamond where 1℃ nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin T2 time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherenee mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.展开更多
We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy cent...We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while eapacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the sealability and controllability. Our methods open an alter- native perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.展开更多
Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficu...Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficult to realize high-efficiency and ultra-low damage machining of diamond.To address these challenges,several polishing methods have been developed for both single crystal diamond(SCD)and polycrystalline diamond(PCD),including mechanical,chemical,laser,and ion beam processing methods.In this review,the characteristics and application scope of various polishing technologies for SCD and PCD are highlighted.Specifically,various energy beam-based direct and assisted polishing technologies,such as laser polishing,ion beam polishing,plasma-assisted polishing,and laser-assisted polishing,are summarized.The current research progress,material removal mechanism,and infuencing factors of each polishing technology are analyzed.Although some of these methods can achieve high material removal rates or reduce surface roughness,no single method can meet all the requirements.Finally,the future development prospects and application directions of different polishing technologies are presented.展开更多
As an ultra-wide bandgap semiconductor,diamond garners significant interest due to its exceptional physical properties^([1–3]).These superior characteristics make diamonds highly promising for applications in power e...As an ultra-wide bandgap semiconductor,diamond garners significant interest due to its exceptional physical properties^([1–3]).These superior characteristics make diamonds highly promising for applications in power electronics^([4]),deep-ultraviolet detectors^([5]),high-energy particle detectors^([6]),and quantum devices based on color centers^([7]).展开更多
The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure(HPHT) growth environment was systematically investigated in this work by developing three growth systems,namely, "F...The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure(HPHT) growth environment was systematically investigated in this work by developing three growth systems,namely, "FeNi+Ti", "FeNi+G_(3)N_(6)H_(6)",and "FeNi+Ti+C_(3)N_(6)H_(6)".Optical microscopy,infrared spectroscopy,and photoluminescence(PL)spectroscopy measurements were conducted to analyze the spectroscopic characteristics of diamonds grown in these three systems.From our analysis,it was demonstrated that the presence of hydrogen in the sp^(3) hybrid C-H does not directly affect the color of the diamond and facilitates the increase of the nitrogen-vacancy(NV) center concentration in a highnitrogen-content diamond.In addition,titanium plays an important role in nitrogen removal,while its impact on hydrogen doping within the diamond lattice is insignificant.Most importantly,by regulating the ratio of nitrogen impurities that coexist in the nitrogen and hydrogen HPHT environment,the production of hydrogenous Ⅱa-type diamond,hydrogenous Ib-type diamond,and hydrogenous high-nitrogen-type diamonds was achieved with a nitrogen content of less than 1 ppm to 1600 ppm.展开更多
Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic pr...Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic properties,visualizing its magnetic distribution has been a longstanding challenge.In this work,we introduce an innovative method by using a fiber optic diamond probe,a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields.We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50denomination anti-counterfeiting strip.Additionally,we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip.The findings and method presented in this study hold broader significance,extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips.These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Science and Technology Plan Project of State Administration of Market Regulation,China(Grant No.2021MK039)。
文摘An integrated quantum probe for magnetic field imaging is proposed,where the nitrogen–vacancy(NV)center fixed at the fiber tip is located on the periphery of flexible ring resonator.Using flexible polyimide(PI)as the substrate medium,we design a circular microstrip antenna,which can achieve a bandwidth of 140 MHz at Zeeman splitting frequency of 2.87 GHz,specifically suitable for NV center experiments.Subsequently,this antenna is seamlessly fixed at a three-dimensional-printed cylindrical support,allowing the optical fiber tip to extend out of a dedicated aperture.To mitigate errors originating from processing,precise tuning within a narrow range can be achieved by adjusting the conformal amplitude.Finally,we image the microwave magnetic field around the integrated probe with high resolution,and determine the suitable area for placing the fiber tip(SAP).
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.51922009,51727808,62175219,62103385,and 51821003)the Key Laboratory of Shanxi Province(Grant No.201905D121001)the Shanxi‘1331 Project’Key Subjects Construction.
文摘High precision current measurement is very important for the calibration of various high-precision equipment and the measurement of other precision detection fields.A new current sensor based on diamond nitrogen-vacancy(NV)color center magnetic measurement method is proposed to realize the accurate measurement of current.This new current method can greatly improve the accuracy of current measurement.Experiments show that the linearity of the current sensor based on diamond NV color center can reach up to 33 ppm,which is superior to other current sensors and solves the problem of low linearity.When the range of input current is 5-40 A,the absolute error of the calculated current is less than 51μA,and the relative error is 2.42×10^(-6) at 40 A.Combined with the research content and results of the experiment,the application of the current sensor in the field of current precision measurement is prospected.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921103the National Key R&D Program of China under Grant No 2016YFA0401503+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000the National Natural Science Foundation of China under Grant Nos 11574386,11575288 and 51402350the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2016006
文摘The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena.In situ sensing of spin and charge properties under high pressure is crucially important but remains technically challenging.While the nitrogen-vacancy(NV)center in diamond is a promising quantum sensor under extreme conditions,its spin dynamics and the quantum control of its spin states under high pressure remain elusive.In this study,we demonstrate coherent control,spin relaxation,and spin dephasing measurements for ensemble NV centers up to 32.8 GPa.With this in situ quantum sensor,we investigate the pressure-induced magnetic phase transition of a micron-size permanent magnet Nd2Fe14B sample in a diamond anvil cell,with a spatial resolution of ~2μm,and sensitivity of ~20 μT/Hz1/2. This scheme could be generalized to measure other parameters such as temperature,pressure and their gradients under extreme conditions.This will be beneficial for frontier research of condensed matter physics and geophysics.
基金supported by the Provincial Control Technology Project No.52120519002N.
文摘Magnetic field measurement plays an extremely important role in material science,electronic en-gineering,power system and even industrial fields.In particular,magnetic field measurement provides a safe and reliable tool for industrial non-destructive testing.The sensitivity of magnetic field measurement deter-mines the highest level of detection.The diamond nitrogen-vacancy(NV)color center is a new type of quan-tum sensor developed in recent years.The external magnetic field will cause Zeeman splitting of the ground state energy level of the diamond NV color center.Optical detection magnetic resonance(ODMR),using a mi-crowave source and a lock-in amplifier to detect the resonant frequency of the NV color center,and finally the change of the resonant frequency can accurately calculate the size of the external magnetic field and the sensi-tivity of the external magnetic field change.In the experiment,a diamond containing a high concentration of NV color centers is coupled with an optical fiber to realize the preparation of a magnetic field scanning probe.Then,the surface cracks of the magnetized iron plate weld are scanned,and the scanning results are drawn into a two-dimensional magnetic force distribution map,according to the magnetic field gradient change of the magnetic force distribution map,the position and size of the crack can be judged very accurately,which pro-vides a very effective diagnostic tool for industrial safety.
基金Supported by the National Key R&D Program of China(Grant No.2017YFB0403602)the Nature Science Foundation of Jiangsu Province(Grant No.SBK2020041231)the Suqian Sci&Tech Program(Grant No.K201912)。
文摘Determination and control of nitrogen-vacancy(NV)centers play an important role in sensing the vector field by using their quantum information.To measure orientation of NV centers in a diamond particle attached to a tapered fiber rapidly,we propose a new method to establish the direction cosine matrix between the lab frame and the NV body frame.In this method,only four groups of the ODMR spectrum peaks shift data need to be collected,and the magnetic field along±Z and±Y in the lab frame is applied in the meantime.We can also control any NV axis to rotate to the X,Y,Z axes in the lab frame according to the elements of this matrix.The demonstration of the DC and microwave magnetic field vector sensing is presented.Finally,the proposed method can help us to perform vector magnetic field sensing more conveniently and rapidly.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0304504the National Natural Science Foundation of China under Grant Nos 11374290,61522508,91536219 and 11504363
文摘Single-photon flux is one of the crucial properties of nitrogen vacancy (NV) centers in diamond for its application in quantum information techniques. Here we fabricate diamond conical nanowires to enhance the single-photon count rate. Through the interaction between tightly confined optical mode in nanowires and NV centers, the single-photon lifetime is much shortened and the collection efficiency is enhanced. As a result, the detected single-photon rate can be at 564 kcps, and the total detection coefficient can be 0.8%, which is much higher than that in bulk diamond. Such a nanowire single-photon device with high photon flux can be applied to improve the fidelity of quantum computation and the precision of quantum sensors.
基金This work was supported by the National Key R&D Program of China(Grant No.2020YFA0309400)the National Natural Science Foundation of China(Grant No.12174081)the Fundamental Research Funds for the Central Universities(Grant Nos.JZ2021HGTB0126 and PA2021KCPY0052).
文摘Nitrogen-vacancy(NV)centers in a bulk diamond are often employed to realize measurement of multiple physical quantities,which depends on orientation information of NV axis.We report a fast and effective method to determine the orientation of NV axis with the aid of a static magnetic field.By measuring the optically detected magnetic resonance spectra,we can precisely extract the polar angle information between the NV axis and the known magnetic field.Combining with the polar angle information of different kinds of NV centers,we employ the Nelder-Mead algorithm to get the optimal solution of the orientation of NV axis.This method is simple and efficient,and is easily applied in NV-based quantum sensing.
文摘This work⑴was additionally supported by the National Key R&D Program of China under Grant No 2018YFA0305700.The financial acknowledgment section should be corrected as follows:Supported by the National Basic Research Program of China under Grant No 2015CB921103,the National Key R&D Program of China under Grant Nos 2016YFA0401503 and 2018YFA0305700,the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274371,62271450,U21A2070,21805247,12074345)Cross-Disciplinary Innovative Research Group Project of Henan Province(Grant No.232300421004).
文摘Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous materials,which significantly affects the performance of diamond-based devices.Herein,combing experiments and theoretical calculations,taking diamond–iron(Fe)interface as a prototype,the counter-diffusion mechanism of Fe/carbon atoms has been established.Surprisingly,it is identified that Fe and diamond first form a coherent interface,and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites.Meanwhile,the relaxed carbon atoms diffuse into the Fe lattice,forming Fe_(3)C.Moreover,graphite is observed at the Fe_(3)C surface when Fe_(3)C is over-saturated by carbon atoms.The present findings are expected to offer new insights into the atomic mechanism for diamondferrous material's interfacial reactions,benefiting diamond-based device applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11264042,61465013,11465020,and 11165015)the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education(Grant No.201316)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘We design proposals to generate a remote Greenberger-Horne-Zeilinger(GHZ) state and a W state of nitrogenvacancy(NV) centers coupled to microtoroidal resonators(MTRs) through noisy channels by utilizing time-bin encoding processes and fast-optical-switch-based polarization rotation operations.The polarization and phase noise induced by noisy channels generally affect the time of state generation but not its success probability and fidelity.Besides,the above proposals can be generalized to n-qubit between two or among n remote nodes with success probability unity under ideal conditions.Furthennore,the proposals are robust for regular noise-changeable channels for the n-node case.This method is also useful in other remote quantum information processing tasks through noisy channels.
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB921402 and 2015CB921103the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07010300the National Natural Science Foundation of China under Grant No 11574386
文摘We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ⅰb diamond; or 13C nuclear spin bath for type-Ⅱa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time (T2 ) of about 400#8. However, in a high-purity type-Ⅱa diamond where 1℃ nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin T2 time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherenee mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.
基金Supported by the National Natural Science Foundation of China under Grant No 11305021the Fundamental Research Funds for the Central Universities of China under Grants Nos 3132014229 and 3132014328
文摘We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while eapacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the sealability and controllability. Our methods open an alter- native perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.
基金sponsored by the National Natural Science Foundation of China(Nos.51835004,U22A20198)the Major Science and Technology Projects in Henan Province(221100230300)the 111 Project(No.B23011)。
文摘Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficult to realize high-efficiency and ultra-low damage machining of diamond.To address these challenges,several polishing methods have been developed for both single crystal diamond(SCD)and polycrystalline diamond(PCD),including mechanical,chemical,laser,and ion beam processing methods.In this review,the characteristics and application scope of various polishing technologies for SCD and PCD are highlighted.Specifically,various energy beam-based direct and assisted polishing technologies,such as laser polishing,ion beam polishing,plasma-assisted polishing,and laser-assisted polishing,are summarized.The current research progress,material removal mechanism,and infuencing factors of each polishing technology are analyzed.Although some of these methods can achieve high material removal rates or reduce surface roughness,no single method can meet all the requirements.Finally,the future development prospects and application directions of different polishing technologies are presented.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3608600)the Beijing Municipal Science and Technology Commission(Grant No.Z181100004418009)the National Natural Science Foundation of China(Grant No.61927806)。
文摘As an ultra-wide bandgap semiconductor,diamond garners significant interest due to its exceptional physical properties^([1–3]).These superior characteristics make diamonds highly promising for applications in power electronics^([4]),deep-ultraviolet detectors^([5]),high-energy particle detectors^([6]),and quantum devices based on color centers^([7]).
基金supported by the National Natural Science Foundation of China (Grant Nos. 12274373 and 12004341)the Open Project of Inner Mongolia Key Laboratory of High-pressure Phase Functional Materials,Chifeng University (Grant No. cfxygy202301)+1 种基金the Science and Technology Project of Xilinguole Province (Grant No. 202209)the Natural Science Foundation of Henan Province (Grant No. 242300421155)。
文摘The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure(HPHT) growth environment was systematically investigated in this work by developing three growth systems,namely, "FeNi+Ti", "FeNi+G_(3)N_(6)H_(6)",and "FeNi+Ti+C_(3)N_(6)H_(6)".Optical microscopy,infrared spectroscopy,and photoluminescence(PL)spectroscopy measurements were conducted to analyze the spectroscopic characteristics of diamonds grown in these three systems.From our analysis,it was demonstrated that the presence of hydrogen in the sp^(3) hybrid C-H does not directly affect the color of the diamond and facilitates the increase of the nitrogen-vacancy(NV) center concentration in a highnitrogen-content diamond.In addition,titanium plays an important role in nitrogen removal,while its impact on hydrogen doping within the diamond lattice is insignificant.Most importantly,by regulating the ratio of nitrogen impurities that coexist in the nitrogen and hydrogen HPHT environment,the production of hydrogenous Ⅱa-type diamond,hydrogenous Ib-type diamond,and hydrogenous high-nitrogen-type diamonds was achieved with a nitrogen content of less than 1 ppm to 1600 ppm.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFB2012600)the Shanghai Aerospace Science and Technology Innovation Fund,China (Grant No.SAST-2022-102)。
文摘Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic properties,visualizing its magnetic distribution has been a longstanding challenge.In this work,we introduce an innovative method by using a fiber optic diamond probe,a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields.We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50denomination anti-counterfeiting strip.Additionally,we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip.The findings and method presented in this study hold broader significance,extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips.These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited.