It has been previously argued that application of organic residues added in soils has a great impact on soil quality, grain productivity as well as greenhouse gas emissions. Substitution of chemical fertilizers has be...It has been previously argued that application of organic residues added in soils has a great impact on soil quality, grain productivity as well as greenhouse gas emissions. Substitution of chemical fertilizers has become a common practice in agricultural systems which consequently affect the greenhouse gas emissions from agricultural fields. To observe the effects of organic manures and crop residues amendments, five fertilizer treatments including conventional inorganic nitrogen fertilizer—NPK, cow manure, rice straw, poultry manure and sugarcane bagasse were applied in the field for two consecutive pre-monsoon rice seasons. Addition of rice straw, poultry manure and sugarcane bagasse decreased the cumulative N2O emissions by 14% and 31%, and by 1% and 7% and 5% and 3% in 2012 and 2013 respectively when compared with conventional fertilizer treatment (NPK) in both the seasons. Yield differences were not significant (p > 0.005) amongst the treatments, however, a slight increase was observed due to rice straw amendment over control. Soil organic carbon decreased by 11% - 17% under the application of organic residues which might have contributed to lower N2O emissions from the plots. Results of carbon equivalent emission (CEE) and carbon efficiency ratio (CER) indicated that incorporation of rice straw during pre-monsoon rice season had the potential to reduce the N2O emissions and yield scaled emissions of rice production at lower level than the conventional farmers’ practice of using chemical fertilizers (NPK).展开更多
Water regime and nitrogen(N) fertilizer are two important factors impacting greenhouse gases(GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we condu...Water regime and nitrogen(N) fertilizer are two important factors impacting greenhouse gases(GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we conducted a two-year field experiment to study the impacts of water regime and N fertilizer on rice yields and GHG emissions in Harbin, China, a cold region located in high latitudes. Our results showed that intermittent irrigation significantly decreased methane(CH4) emission compared with continuous flooding, however,the decrement was far lower than the global average level. The N2O emissions were very small when flooded but peaked at the beginning of the disappearance of floodwater. The N fertilizer treatments increased CH4 emissions at low level(75 kg N/ha). But both CH4 and N2O emissions were uninfluenced at the levels of 150 kg N/ha and 225 kg N/ha. Rice yields increased under intermittent irrigation and were highest at the level of 150 kg N/ha. From our results, we recommended that the intermittent irrigation and 150 kg N/ha as the ideal water regime-nitrogen fertilizer incorporation for this area to achieve low GHG emissions without impacting rice yields.展开更多
通过连续种植四季蔬菜近一年的大田试验,探究高施氮水平和低氮肥利用率的蔬菜生产系统中,N2O排放量与氮肥施用量之间的定量关系及其机理,并研究硝化抑制剂减少菜地N2O排放的效果。结果表明,在氮肥施用水平为N 0~1 733 kg hm-2a-1间,无...通过连续种植四季蔬菜近一年的大田试验,探究高施氮水平和低氮肥利用率的蔬菜生产系统中,N2O排放量与氮肥施用量之间的定量关系及其机理,并研究硝化抑制剂减少菜地N2O排放的效果。结果表明,在氮肥施用水平为N 0~1 733 kg hm-2a-1间,无论氮肥中是否添加硝化抑制剂,N2O总排放量与氮肥施用量均呈指数函数关系,即氮肥施用量高时,N2O排放率也高。在各氮肥水平处理下,硝化抑制剂均能降低N2O排放,抑制率为8.75%~25.28%,且这种减排效果随着施氮量增加而增加。在氮肥施用量为N 300或400 kg hm-2季-1时,施用硝化抑制剂减少N2O排放所带来的效益略高于其成本,因此,即使不考虑氮肥利用率的提高等因素,施用硝化抑制剂仍是一种有利的选择。展开更多
文摘It has been previously argued that application of organic residues added in soils has a great impact on soil quality, grain productivity as well as greenhouse gas emissions. Substitution of chemical fertilizers has become a common practice in agricultural systems which consequently affect the greenhouse gas emissions from agricultural fields. To observe the effects of organic manures and crop residues amendments, five fertilizer treatments including conventional inorganic nitrogen fertilizer—NPK, cow manure, rice straw, poultry manure and sugarcane bagasse were applied in the field for two consecutive pre-monsoon rice seasons. Addition of rice straw, poultry manure and sugarcane bagasse decreased the cumulative N2O emissions by 14% and 31%, and by 1% and 7% and 5% and 3% in 2012 and 2013 respectively when compared with conventional fertilizer treatment (NPK) in both the seasons. Yield differences were not significant (p > 0.005) amongst the treatments, however, a slight increase was observed due to rice straw amendment over control. Soil organic carbon decreased by 11% - 17% under the application of organic residues which might have contributed to lower N2O emissions from the plots. Results of carbon equivalent emission (CEE) and carbon efficiency ratio (CER) indicated that incorporation of rice straw during pre-monsoon rice season had the potential to reduce the N2O emissions and yield scaled emissions of rice production at lower level than the conventional farmers’ practice of using chemical fertilizers (NPK).
基金supported by the China Postdoctoral Science Foundation(No.2012M511005)National Key Technology Support Program of China(No.2015BAC02B02)+6 种基金the Agro-scientific Research Programs in Public Interest(No.201303102)National Natural Science Foundation of China(No.31501263)the Postdoctoral Financial Assistance of Heilongjiang Province(No.LBH-Z12232)the Scientific Research Initiation Fund for Introduction of Ph.D Talent of Heilongjiang Academy of Agricultural Sciences(No.201507-14)the State Key Program of China(No.2016YFD0300900)the Major Project of Research and Development of Applied Technology of Heilongjiang Province(No.GA15B101)the Provincial Matching Funds to the National Foundation of Applied Technology Research and Development Program in Heilongjiang Province(No.GX16B002)
文摘Water regime and nitrogen(N) fertilizer are two important factors impacting greenhouse gases(GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we conducted a two-year field experiment to study the impacts of water regime and N fertilizer on rice yields and GHG emissions in Harbin, China, a cold region located in high latitudes. Our results showed that intermittent irrigation significantly decreased methane(CH4) emission compared with continuous flooding, however,the decrement was far lower than the global average level. The N2O emissions were very small when flooded but peaked at the beginning of the disappearance of floodwater. The N fertilizer treatments increased CH4 emissions at low level(75 kg N/ha). But both CH4 and N2O emissions were uninfluenced at the levels of 150 kg N/ha and 225 kg N/ha. Rice yields increased under intermittent irrigation and were highest at the level of 150 kg N/ha. From our results, we recommended that the intermittent irrigation and 150 kg N/ha as the ideal water regime-nitrogen fertilizer incorporation for this area to achieve low GHG emissions without impacting rice yields.
文摘通过连续种植四季蔬菜近一年的大田试验,探究高施氮水平和低氮肥利用率的蔬菜生产系统中,N2O排放量与氮肥施用量之间的定量关系及其机理,并研究硝化抑制剂减少菜地N2O排放的效果。结果表明,在氮肥施用水平为N 0~1 733 kg hm-2a-1间,无论氮肥中是否添加硝化抑制剂,N2O总排放量与氮肥施用量均呈指数函数关系,即氮肥施用量高时,N2O排放率也高。在各氮肥水平处理下,硝化抑制剂均能降低N2O排放,抑制率为8.75%~25.28%,且这种减排效果随着施氮量增加而增加。在氮肥施用量为N 300或400 kg hm-2季-1时,施用硝化抑制剂减少N2O排放所带来的效益略高于其成本,因此,即使不考虑氮肥利用率的提高等因素,施用硝化抑制剂仍是一种有利的选择。