Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar ...In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.展开更多
A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method ...A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.展开更多
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from th...A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from the behavior of real ants. ACO algorithm is first introduced, a kind of positive feedback mechanism is adopted in ACO. Then, the solu- tion problem of linear systems of equations was reformulated as an unconstrained optimization problem for solution by an ACID algorithm. Finally, the ACID with other traditional methods is applied to solve a kind of multi-dimensional Hilbert ill-conditioned linear equations. The numerical results demonstrate that ACO is effective, robust and recommendable in solving ill-conditioned linear systems of equations.展开更多
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corres...This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka(Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstratio Math., 2018, 51: 198–210).展开更多
In this paper,we study the superconvergence properties of the energy-conserving discontinuous Galerkin(DG)method in[18]for one-dimensional linear hyperbolic equations.We prove the approximate solution superconverges t...In this paper,we study the superconvergence properties of the energy-conserving discontinuous Galerkin(DG)method in[18]for one-dimensional linear hyperbolic equations.We prove the approximate solution superconverges to a particular projection of the exact solution.The order of this superconvergence is proved to be k+2 when piecewise Pk polynomials with K≥1 are used.The proof is valid for arbitrary non-uniform regular meshes and for piecewise polynomials with arbitrary K≥1.Furthermore,we find that the derivative and function value approxi?mations of the DG solution are superconvergent at a class of special points,with an order of k+1 and R+2,respectively.We also prove,under suitable choice of initial discretization,a(2k+l)-th order superconvergence rate of the DG solution for the numerical fluxes and the cell averages.Numerical experiments are given to demonstrate these theoretical results.展开更多
In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution n...In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).展开更多
In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion e...In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation.展开更多
Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrödinger Equation (...Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrödinger Equation (TDSE) is obtained from the continuum limit of linear QCA. Similarly it is found that some nonlinear advection-diffusion equations including inviscid Burgers equation and porous-medium equation are obtained from LFMT NLQCA.展开更多
In this paper,we investigate the growth of meromorphic solutions of some kind of non-homogeneous linear difference equations with special meromorphic coefficients.When there are more than one coefficient having the sa...In this paper,we investigate the growth of meromorphic solutions of some kind of non-homogeneous linear difference equations with special meromorphic coefficients.When there are more than one coefficient having the same maximal order and the same maximal type,the estimates on the lower bound of the order of meromorphic solutions of the involved equations are obtained.Meanwhile,the above estimates are sharpened by combining the relative results of the corresponding homogeneous linear difference equations.展开更多
For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Bo...For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with pad6 approximation.展开更多
This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obt...This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.展开更多
New forms of different-periodic travelling wave solutions for the (2+1)-dimensional Zakharov-Kuznetsov (ZK) equation and the Davey-Stewartson (DS) equation are obtained by the linear superposition approach of J...New forms of different-periodic travelling wave solutions for the (2+1)-dimensional Zakharov-Kuznetsov (ZK) equation and the Davey-Stewartson (DS) equation are obtained by the linear superposition approach of Jacobi elliptic function. A sequence of cyclic identities plays an important role in these procedures.展开更多
The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence...The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence of pullback D-absorbing sets with cocycle and obtaining the pullback :D-asymptotic compactness. Furthermore, the estimation of the fractal dimensions for the 2D g-Navier-Stokes equations is given.展开更多
We discuss the incomplete semi-iterative method (ISIM) for an approximate solution of a linear fixed point equations x=Tx+c with a bounded linear operator T acting on a complex Banach space X such that its resolvent h...We discuss the incomplete semi-iterative method (ISIM) for an approximate solution of a linear fixed point equations x=Tx+c with a bounded linear operator T acting on a complex Banach space X such that its resolvent has a pole of order k at the point 1. Sufficient conditions for the convergence of ISIM to a solution of x=Tx+c, where c belongs to the range space of R(I-T) k, are established. We show that the ISIM has an attractive feature that it is usually convergent even when the spectral radius of the operator T is greater than 1 and Ind 1T≥1. Applications in finite Markov chain is considered and illustrative examples are reported, showing the convergence rate of the ISIM is very high.展开更多
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金the National Natural Science Foundation of China(10161006,10571044)the Natural Science Foundation of Guangdong Prov(06025059)
文摘In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.
基金Project supported by the National Natural Science Foundation of China (Nos. 10232040, 10572002 and 10572003)
文摘A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
文摘A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from the behavior of real ants. ACO algorithm is first introduced, a kind of positive feedback mechanism is adopted in ACO. Then, the solu- tion problem of linear systems of equations was reformulated as an unconstrained optimization problem for solution by an ACID algorithm. Finally, the ACID with other traditional methods is applied to solve a kind of multi-dimensional Hilbert ill-conditioned linear equations. The numerical results demonstrate that ACO is effective, robust and recommendable in solving ill-conditioned linear systems of equations.
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
文摘This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka(Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstratio Math., 2018, 51: 198–210).
文摘In this paper,we study the superconvergence properties of the energy-conserving discontinuous Galerkin(DG)method in[18]for one-dimensional linear hyperbolic equations.We prove the approximate solution superconverges to a particular projection of the exact solution.The order of this superconvergence is proved to be k+2 when piecewise Pk polynomials with K≥1 are used.The proof is valid for arbitrary non-uniform regular meshes and for piecewise polynomials with arbitrary K≥1.Furthermore,we find that the derivative and function value approxi?mations of the DG solution are superconvergent at a class of special points,with an order of k+1 and R+2,respectively.We also prove,under suitable choice of initial discretization,a(2k+l)-th order superconvergence rate of the DG solution for the numerical fluxes and the cell averages.Numerical experiments are given to demonstrate these theoretical results.
文摘In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).
文摘In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation.
文摘Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrödinger Equation (TDSE) is obtained from the continuum limit of linear QCA. Similarly it is found that some nonlinear advection-diffusion equations including inviscid Burgers equation and porous-medium equation are obtained from LFMT NLQCA.
基金Supported by the National Natural Science Foundation of China(No.11761035)the Natural Science Foundation of Jiangxi Province in China(No.20171BAB201002)
文摘In this paper,we investigate the growth of meromorphic solutions of some kind of non-homogeneous linear difference equations with special meromorphic coefficients.When there are more than one coefficient having the same maximal order and the same maximal type,the estimates on the lower bound of the order of meromorphic solutions of the involved equations are obtained.Meanwhile,the above estimates are sharpened by combining the relative results of the corresponding homogeneous linear difference equations.
基金financially supported by the National Science and Technology Support Program of China(Grant No.2010BAC68B04)
文摘For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with pad6 approximation.
基金This project is supported by the National Natural Science Foundation of China
文摘This paper presents a new highly parallel algorithm for computing the minimum-norm least-squares solution of inconsistent linear equations Ax = b(A∈Rm×n,b∈R (A)). By this algorithm the solution x = A + b is obtained in T = n(log2m + log2(n - r + 1) + 5) + log2m + 1 steps with P=mn processors when m × 2(n - 1) and with P = 2n(n - 1) processors otherwise.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Foundation of Zhejiang Province (Grant No 102053).
文摘New forms of different-periodic travelling wave solutions for the (2+1)-dimensional Zakharov-Kuznetsov (ZK) equation and the Davey-Stewartson (DS) equation are obtained by the linear superposition approach of Jacobi elliptic function. A sequence of cyclic identities plays an important role in these procedures.
基金supported by the National Natural Science Foundation of China (No.10871156)the Fund of Xi'an Jiaotong University (No.2009xjtujc30)
文摘The pullback attractors for the 2D nonautonomous g-Navier-Stokes equations with linear dampness axe investigated on some unbounded domains. The existence of the pullback attractors is proved by verifying the existence of pullback D-absorbing sets with cocycle and obtaining the pullback :D-asymptotic compactness. Furthermore, the estimation of the fractal dimensions for the 2D g-Navier-Stokes equations is given.
基金Project1 990 1 0 0 6 supported by National Natural Science Foundation of China,Doctoral Foundation of China,Chi-na Scholarship council and Laboratory of Computational Physics in Beijing of Chinathe second author is also supportedby the State Major Key
文摘We discuss the incomplete semi-iterative method (ISIM) for an approximate solution of a linear fixed point equations x=Tx+c with a bounded linear operator T acting on a complex Banach space X such that its resolvent has a pole of order k at the point 1. Sufficient conditions for the convergence of ISIM to a solution of x=Tx+c, where c belongs to the range space of R(I-T) k, are established. We show that the ISIM has an attractive feature that it is usually convergent even when the spectral radius of the operator T is greater than 1 and Ind 1T≥1. Applications in finite Markov chain is considered and illustrative examples are reported, showing the convergence rate of the ISIM is very high.