提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个...提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个自适应混合能量参数λk,改善算法收敛速度和鲁棒性。首先通过仿真分析变步长算法中的3个固定参数α,β,μ的取值范围及对算法收敛性能的影响;并在两种典型的水声信道环境下,采用两种调制信号对算法的收敛性能进行计算机仿真,结果显示,新算法的收敛速度明显快于XENLMS算法和已有的变步长算法,收敛性能接近递归最小二乘(recursive least square,RLS)算法的最优性能,但计算复杂度远小于RLS算法。最后,木兰湖试验验证了带判决反馈均衡器(decision feedback equalization,DFE)结构的新算法具有较好的克服多径效应和多普勒频移补偿的能力,相比LMS-DFE提高了一个数量级。展开更多
为规避最小均方(Least Mean Square,LMS)算法不能同时提高收敛速度和降低稳态误差的固有缺陷,以及已有变步长LMS算法存在收敛速度慢和稳态误差估计精度差的问题,文中提出了一种基于变步长归一化频域块(Normalized Frequency-domain Bloc...为规避最小均方(Least Mean Square,LMS)算法不能同时提高收敛速度和降低稳态误差的固有缺陷,以及已有变步长LMS算法存在收敛速度慢和稳态误差估计精度差的问题,文中提出了一种基于变步长归一化频域块(Normalized Frequency-domain Block,NFB)LMS算法的汽车车内噪声主动控制方法。为了比较,应用传统的LMS算法、基于反正切函数的变步长LMS算法和变步长NFB-LMS算法分别进行实测汽车车内噪声的主动控制。结果表明,与其他两个算法相比,变步长NFB-LMS算法的收敛速度提高了70%以上,稳态误差减小了90%以上。变步长NFB-LMS算法在处理车内噪声信号时具有很高的效率,为进行汽车车内噪声主动控制提供了一种新方法。展开更多
文摘提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个自适应混合能量参数λk,改善算法收敛速度和鲁棒性。首先通过仿真分析变步长算法中的3个固定参数α,β,μ的取值范围及对算法收敛性能的影响;并在两种典型的水声信道环境下,采用两种调制信号对算法的收敛性能进行计算机仿真,结果显示,新算法的收敛速度明显快于XENLMS算法和已有的变步长算法,收敛性能接近递归最小二乘(recursive least square,RLS)算法的最优性能,但计算复杂度远小于RLS算法。最后,木兰湖试验验证了带判决反馈均衡器(decision feedback equalization,DFE)结构的新算法具有较好的克服多径效应和多普勒频移补偿的能力,相比LMS-DFE提高了一个数量级。
文摘为规避最小均方(Least Mean Square,LMS)算法不能同时提高收敛速度和降低稳态误差的固有缺陷,以及已有变步长LMS算法存在收敛速度慢和稳态误差估计精度差的问题,文中提出了一种基于变步长归一化频域块(Normalized Frequency-domain Block,NFB)LMS算法的汽车车内噪声主动控制方法。为了比较,应用传统的LMS算法、基于反正切函数的变步长LMS算法和变步长NFB-LMS算法分别进行实测汽车车内噪声的主动控制。结果表明,与其他两个算法相比,变步长NFB-LMS算法的收敛速度提高了70%以上,稳态误差减小了90%以上。变步长NFB-LMS算法在处理车内噪声信号时具有很高的效率,为进行汽车车内噪声主动控制提供了一种新方法。