期刊文献+
共找到1,091篇文章
< 1 2 55 >
每页显示 20 50 100
No-reference image quality assessment based on AdaBoost_BP neural network in wavelet domain 被引量:1
1
作者 YAN Junhua BAI Xuehan +4 位作者 ZHANG Wanyi XIAO Yongqi CHATWIN Chris YOUNG Rupert BIRCH Phil 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期223-237,共15页
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based o... Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method. 展开更多
关键词 image quality assessment (IQA) AdaBoost_BP neural network (ABNN) WAVELET transform natural SCENE STATISTICS (NSS) local information ENTROPY
下载PDF
No-Reference Image Quality Assessment Method Based on Visual Parameters
2
作者 Yu-Hong Liu Kai-Fu Yang Hong-Mei Yan 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第2期171-184,共14页
Recent studies on no-reference image quality assessment (NR-IQA) methods usually learn to evaluate the image quality by regressing from human subjective scores of the training samples. This study presented an NR-IQA m... Recent studies on no-reference image quality assessment (NR-IQA) methods usually learn to evaluate the image quality by regressing from human subjective scores of the training samples. This study presented an NR-IQA method based on the basic image visual parameters without using human scored image databases in learning. We demonstrated that these features comprised the most basic characteristics for constructing an image and influencing the visual quality of an image. In this paper, the definitions, computational method, and relationships among these visual metrics were described. We subsequently proposed a no-reference assessment function, which was referred to as a visual parameter measurement index (VPMI), based on the integration of these visual metrics to assess image quality. It is established that the maximum of VPMI corresponds to the best quality of the color image. We verified this method using the popular assessment database—image quality assessment database (LIVE), and the results indicated that the proposed method matched better with the subjective assessment of human vision. Compared with other image quality assessment models, it is highly competitive. VPMI has low computational complexity, which makes it promising to implement in real-time image assessment systems. 展开更多
关键词 BANDWIDTH human VISUAL system information entropy LUMINANCE no-reference image quality assessment (NR-IQA) VISUAL parameter measurement index (VPMI)
下载PDF
Bridge the Gap Between Full-Reference and No-Reference:A Totally Full-Reference Induced Blind Image Quality Assessment via Deep Neural Networks 被引量:2
3
作者 Xiaoyu Ma Suiyu Zhang +1 位作者 Chang Liu Dingguo Yu 《China Communications》 SCIE CSCD 2023年第6期215-228,共14页
Blind image quality assessment(BIQA)is of fundamental importance in low-level computer vision community.Increasing interest has been drawn in exploiting deep neural networks for BIQA.Despite of the notable success ach... Blind image quality assessment(BIQA)is of fundamental importance in low-level computer vision community.Increasing interest has been drawn in exploiting deep neural networks for BIQA.Despite of the notable success achieved,there is a broad consensus that training deep convolutional neural networks(DCNN)heavily relies on massive annotated data.Unfortunately,BIQA is typically a small sample problem,resulting the generalization ability of BIQA severely restricted.In order to improve the accuracy and generalization ability of BIQA metrics,this work proposed a totally opinion-unaware BIQA in which no subjective annotations are involved in the training stage.Multiple full-reference image quality assessment(FR-IQA)metrics are employed to label the distorted image as a substitution of subjective quality annotation.A deep neural network(DNN)is trained to blindly predict the multiple FR-IQA score in absence of corresponding pristine image.In the end,a selfsupervised FR-IQA score aggregator implemented by adversarial auto-encoder pools the predictions of multiple FR-IQA scores into the final quality predicting score.Even though none of subjective scores are involved in the training stage,experimental results indicate that our proposed full reference induced BIQA framework is as competitive as state-of-the-art BIQA metrics. 展开更多
关键词 deep neural networks image quality assessment adversarial auto encoder
下载PDF
Blind Image Quality Assessment by Pairwise Ranking Image Series
4
作者 Li Xu Xiuhua Jiang 《China Communications》 SCIE CSCD 2023年第9期127-143,共17页
Image quality assessment(IQA)is constantly innovating,but there are still three types of stickers that have not been resolved:the“content sticker”-limitation of training set,the“annotation sticker”-subjective inst... Image quality assessment(IQA)is constantly innovating,but there are still three types of stickers that have not been resolved:the“content sticker”-limitation of training set,the“annotation sticker”-subjective instability in opinion scores and the“distortion sticker”-disordered distortion settings.In this paper,a No-Reference Image Quality Assessment(NR IQA)approach is proposed to deal with the problems.For“content sticker”,we introduce the idea of pairwise comparison and generate a largescale ranking set to pre-train the network;For“annotation sticker”,the absolute noise-containing subjective scores are transformed into ranking comparison results,and we design an indirect unsupervised regression based on EigenValue Decomposition(EVD);For“distortion sticker”,we propose a perception-based distortion classification method,which makes the distortion types clear and refined.Experiments have proved that our NR IQA approach Experiments show that the algorithm performs well and has good generalization ability.Furthermore,the proposed perception based distortion classification method would be able to provide insights on how the visual related studies may be developed and to broaden our understanding of human visual system. 展开更多
关键词 no reference image quality assessment distortion classification method pairwise preference network EVD-based unsupervised regression
下载PDF
No-Reference Quality Assessment of Enhanced Images
5
作者 Leida Li Wei Shen +3 位作者 Ke Gu Jinjian Wu Beijing Chen Jianying Zhang 《China Communications》 SCIE CSCD 2016年第9期121-130,共10页
Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remain... Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remains an open problem,which may hinder further development of enhancement techniques.In this paper,a no-reference quality metric for digitally enhanced images is proposed.Three kinds of features are extracted for characterizing the quality of enhanced images,including non-structural information,sharpness and naturalness.Specifically,a total of 42 perceptual features are extracted and used to train a support vector regression(SVR) model.Finally,the trained SVR model is used for predicting the quality of enhanced images.The performance of the proposed method is evaluated on several enhancement-related databases,including a new enhanced image database built by the authors.The experimental results demonstrate the efficiency and advantage of the proposed metric. 展开更多
关键词 image enhancement quality assessment no-reference perceptual feature SVR
下载PDF
Structured Computational Modeling of Human Visual System for No-reference Image Quality Assessment
6
作者 Wen-Han Zhu Wei Sun +2 位作者 Xiong-Kuo Min Guang-Tao Zhai Xiao-Kang Yang 《International Journal of Automation and computing》 EI CSCD 2021年第2期204-218,共15页
Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate eval... Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures. 展开更多
关键词 image quality assessment(IQA) no-reference(NR) structural computational modeling human visual system visual feature extraction
原文传递
No-Reference Stereo Image Quality Assessment Based on Transfer Learning
7
作者 Lixiu Wu Song Wang Qingbing Sang 《Journal of New Media》 2022年第3期125-135,共11页
In order to apply the deep learning to the stereo image quality evaluation,two problems need to be solved:The first one is that we have a bit of training samples,another is how to input the dimensional image’s left v... In order to apply the deep learning to the stereo image quality evaluation,two problems need to be solved:The first one is that we have a bit of training samples,another is how to input the dimensional image’s left view or right view.In this paper,we transfer the 2D image quality evaluation model to the stereo image quality evaluation,and this method solves the first problem;use the method of principal component analysis is used to fuse the left and right views into an input image in order to solve the second problem.At the same time,the input image is preprocessed by phase congruency transformation,which further improves the performance of the algorithm.The structure of the deep convolution neural network consists of four convolution layers and three maximum pooling layers and two fully connected layers.The experimental results on LIVE3D image database show that the prediction quality score of the model is in good agreement with the subjective evaluation value. 展开更多
关键词 no-reference stereo image quality assessment convolution neural network transfer learning phase congruency transformation image fusion
下载PDF
Image quality assessment based on perceptual grouping
8
作者 王同罕 张璐 +3 位作者 贾惠珍 孔佑勇 李宝生 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期29-34,共6页
To further explore the human visual system( HVS),the perceptual grouping( PG), which has been proven to play an important role in the HVS, is adopted to design an effective image quality assessment( IQA) model. ... To further explore the human visual system( HVS),the perceptual grouping( PG), which has been proven to play an important role in the HVS, is adopted to design an effective image quality assessment( IQA) model. Compared with the existing fixed-window-based models, the proposed one is an adaptive window-like model that introduces the perceptual grouping strategy into the IQA model. It works as follows: first,it preprocesses the images by clustering similar pixels into a group to the greatest extent; then the structural similarity is used to compute the similarity of the superpixels between reference and distorted images; finally, it integrates all the similarity of superpixels of an image to yield a quality score. Experimental results on three databases( LIVE, IVC and MICT) showthat the proposed method yields good performance in terms of correlation with human judgments of visual quality. 展开更多
关键词 perceptual grouping perceptual image quality assessment superpixels full reference
下载PDF
Image Tampering Detection Using No-Reference Image Quality Metrics 被引量:3
9
作者 Ying Li Bo Wang +1 位作者 Xiang-Wei Kong Yan-Qing Guo 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第6期51-56,共6页
In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information ... In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information of the original image is a challenging problem since unknown diverse manipulations may have different characteristics and so do various formats of images.Our principle is that image processing,no matter how complex,may affect image quality,so image quality metrics can be used to distinguish tampered images.In particular,based on the alteration of image quality in modified blocks,the proposed method can locate the tampered areas.Referring to four types of effective no-reference image quality metrics,we obtain 13 features to present an image.The experimental results show that the proposed method is very promising on detecting image tampering and locating the locally tampered areas especially in realistic scenarios. 展开更多
关键词 image forensics tampering detection no-reference image quality metrics tampering localization
下载PDF
Color Image Quality Assessment Based on Structural Similarity 被引量:2
10
作者 卢芳芳 赵群飞 杨根科 《Journal of Donghua University(English Edition)》 EI CAS 2010年第4期443-450,共8页
It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural si... It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets. 展开更多
关键词 image quality assessment structural similarity difference mean opinion score color image
下载PDF
NEW VISUAL PERCEPTUAL POOLING STRATEGY FOR IMAGE QUALITY ASSESSMENT 被引量:2
11
作者 Zhou Wujie Jiang Gangyi Yu Mei 《Journal of Electronics(China)》 2012年第3期254-261,共8页
Most of Image Quality Assessment (IQA) metrics consist of two processes. In the first process, quality map of image is measured locally. In the second process, the last quality score is converted from the quality map ... Most of Image Quality Assessment (IQA) metrics consist of two processes. In the first process, quality map of image is measured locally. In the second process, the last quality score is converted from the quality map by using the pooling strategy. The first process had been made effective and significant progresses, while the second process was always done in simple ways. In the second process of the pooling strategy, the optimal perceptual pooling weights should be determined and computed according to Human Visual System (HVS). Thus, a reliable spatial pooling mathematical model based on HVS is an important issue worthy of study. In this paper, a new Visual Perceptual Pooling Strategy (VPPS) for IQA is presented based on contrast sensitivity and luminance sensitivity of HVS. Experimental results with the LIVE database show that the visual perceptual weights, obtained by the proposed pooling strategy, can effectively and significantly improve the performances of the IQA metrics with Mean Structural SIMilarity (MSSIM) or Phase Quantization Code (PQC). It is confirmed that the proposed VPPS demonstrates promising results for improving the performances of existing IQA metrics. 展开更多
关键词 image quality assessment (IQA) Visual Perceptual Pooling Strategy(VPPS) Contrast Sensitivity Function (CSF) Luminance Sensitivity Function (LSF)
下载PDF
SIMPLE QUALITY ASSESSMENT FOR BINARY IMAGES 被引量:2
12
作者 Zhang Chun'e Qiu Zhengding 《Journal of Electronics(China)》 2007年第2期204-208,共5页
Usually image assessment methods could be classified into two categories: subjective as-sessments and objective ones. The latter are judged by the correlation coefficient with subjective quality measurement MOS (Mean ... Usually image assessment methods could be classified into two categories: subjective as-sessments and objective ones. The latter are judged by the correlation coefficient with subjective quality measurement MOS (Mean Opinion Score). This paper presents an objective quality assessment algorithm special for binary images. In the algorithm, noise energy is measured by Euclidean distance between noises and signals and the structural effects caused by noise are described by Euler number change. The assessment on image quality is calculated quantitatively in terms of PSNR (Peak Signal to Noise Ratio). Our experiments show that the results of the algorithm are highly correlative with subjective MOS and the algorithm is more simple and computational saving than traditional objective assessment methods. 展开更多
关键词 image quality assessment Euclidean distance Euler number
下载PDF
Perceptual Gradient Similarity Deviation for Full Reference Image Quality Assessment 被引量:1
13
作者 Manyu Jin Tao Wang +1 位作者 Zexuan Ji Xiaobo Shen 《Computers, Materials & Continua》 SCIE EI 2018年第9期501-515,共15页
Perceptual image quality assessment(IQA)is one of the most indispensable yet challenging problems in image processing and computer vision.It is quite necessary to develop automatic and efficient approaches that can ac... Perceptual image quality assessment(IQA)is one of the most indispensable yet challenging problems in image processing and computer vision.It is quite necessary to develop automatic and efficient approaches that can accurately predict perceptual image quality consistently with human subjective evaluation.To further improve the prediction accuracy for the distortion of color images,in this paper,we propose a novel effective and efficient IQA model,called perceptual gradient similarity deviation(PGSD).Based on the gradient magnitude similarity,we proposed a gradient direction selection method to automatically determine the pixel-wise perceptual gradient.The luminance and chrominance channels are both took into account to characterize the quality degradation caused by intensity and color distortions.Finally,a multi-scale strategy is utilized and pooled with different weights to incorporate image details at different resolutions.Experimental results on LIVE,CSIQ and TID2013 databases demonstrate the superior performances of the proposed algorithm. 展开更多
关键词 image quality assessment full REFERENCE perceptual GRADIENT SIMILARITY MULTI-SCALE standard deviation pooling
下载PDF
A METHOD OF IMAGE QUALITY ASSESSMENT FOR COMPRESSIVE SAMPLING VIDEO TRANSMISSION 被引量:1
14
作者 Chen Shouning Zheng Baoyu Li Jing 《Journal of Electronics(China)》 2012年第6期598-603,共6页
Based on compressive sampling transmission model, we demonstrate here a method of quality evaluation for the reconstruction images, which is promising for the transmission of unstructured signal with reduced dimension... Based on compressive sampling transmission model, we demonstrate here a method of quality evaluation for the reconstruction images, which is promising for the transmission of unstructured signal with reduced dimension. By this method, the auxiliary information of the recovery image quality is obtained as a feedback to control number of measurements from compressive sampling video stream. Therefore, the number of measurements can be easily derived at the condition of the absence of information sparsity, and the recovery image quality is effectively improved. Theoretical and experimental results show that this algorithm can estimate the quality of images effectively and is in well consistency with the traditional objective evaluation algorithm. 展开更多
关键词 Compressive sampling image quality assessment Measurements feedback
下载PDF
Blind Image Quality Assessment Based on Hybrid Fuzzy-Genetic Technique
15
作者 王海 沈庭芝 谢志宏 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期395-398,共4页
A new method for no-reference image quality assessment based on hybrid fuzzy-genetic technique is proposed. Noise variance and edge sharpness level of the restored image are two basic metrics for assessing the perform... A new method for no-reference image quality assessment based on hybrid fuzzy-genetic technique is proposed. Noise variance and edge sharpness level of the restored image are two basic metrics for assessing the performance of the restoration algorithm, then a fuzzy if-then inference system is developed to combine the two metrics to get a final quality score, and the parameters of the fuzzy membership function are trained with genetic algorithms. Experiments results show that the image quality score correlates well with mean opinion score and the proposed approach is robust and effective. 展开更多
关键词 image quality assessment fuzzy inference system genetic algorithms
下载PDF
Perceptual Quality Assessment of Omnidirectional Images:Subjective Experiment and Objective Model Evaluation
16
作者 DUAN Huiyu ZHAI Guangtao +3 位作者 MIN Xiongkuo ZHU Yucheng FANG Yi YANG Xiaokang 《ZTE Communications》 2019年第1期38-47,共10页
Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality... Virtual reality(VR) environment can provide immersive experience to viewers.Under the VR environment, providing a good quality of experience is extremely important.Therefore, in this paper, we present an image quality assessment(IQA) study on omnidirectional images. We first build an omnidirectional IQA(OIQA) database, including 16 source images with their corresponding 320 distorted images. We add four commonly encountered distortions. These distortions are JPEG compression, JPEG2000 compression, Gaussian blur, and Gaussian noise. Then we conduct a subjective quality evaluation study in the VR environment based on the OIQA database. Considering that visual attention is more important in VR environment, head and eye movement data are also tracked and collected during the quality rating experiments. The 16 raw and their corresponding distorted images,subjective quality assessment scores, and the head-orientation data and eye-gaze data together constitute the OIQA database. Based on the OIQA database, we test some state-of-the-art full-reference IQA(FR-IQA) measures on equirectangular format or cubic formatomnidirectional images. The results show that applying FR-IQA metrics on cubic format omnidirectional images could improve their performance. The performance of some FR-IQA metrics combining the saliency weight of three different types are also tested based on our database. Some new phenomena different from traditional IQA are observed. 展开更多
关键词 perceptual quality assessment OMNIDIRECTIONAL imageS SUBJECTIVE EXPERIMENT objective model evaluation VISUAL SALIENCY
下载PDF
Blind Image Quality Assessment Based on Wavelet Power Spectrum in Perceptual Domain
17
作者 路朋罗 李永昌 +1 位作者 金龙旭 韩双丽 《Transactions of Tianjin University》 EI CAS 2016年第6期596-602,共7页
Blind image quality assessment(BIQA) can assess the perceptual quality of a distorted image without a prior knowledge of its reference image or distortion type. In this paper, a novel BIQA model is developed in wavele... Blind image quality assessment(BIQA) can assess the perceptual quality of a distorted image without a prior knowledge of its reference image or distortion type. In this paper, a novel BIQA model is developed in wavelet domain. Considering the multi-resolution and band-passing characteristics of discrete wavelet transform(DWT), an improvement over the power spectrum is put forward, i.e., dubbed wavelet power spectrum(WPS)estimation. Then, the concept of directional WPS is applied to simplify the calculation. Moreover, a rotationally symmetric modulation transfer function(MTF) of human visual system(HVS) is integrated as a filter, which makes the metric to be consistent with the human vision perception and more discriminative. Experiments are conducted on the LIVE databases and three other databases, and the results show that the proposed metric is highly correlated with subjective evaluations and it competes well with other state-of-the-art metrics in terms of effectiveness and robustness. 展开更多
关键词 blind image quality assessment human visual system wavelet power spectrum
下载PDF
No-reference blur assessment method based on gradient and saliency 被引量:2
18
作者 Jia Huizhen Lei Chucong +5 位作者 Wang Tonghan Li Tan Wu Jiasong Li Guang He Jianfeng Shu Huazhong 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期184-191,共8页
To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used... To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low. 展开更多
关键词 no-reference image quality assessment reblurring effect gradient similarity SALIENCY
下载PDF
SAR Image Quality Assessment System Based on Human Visual Perception for Aircraft Electromagnetic Countermeasures
19
作者 Jiajing Wang Dandan Fu +1 位作者 Tao Wang Xiangming An 《国际计算机前沿大会会议论文集》 2015年第1期143-144,共2页
In electronic confrontation, Synthetic Aperture Radar (SAR) is vulnerable to different types of electronic jamming. The research on SAR jamming image quality assessment can provide the prerequisite for SAR jamming and... In electronic confrontation, Synthetic Aperture Radar (SAR) is vulnerable to different types of electronic jamming. The research on SAR jamming image quality assessment can provide the prerequisite for SAR jamming and anti-jamming technology, which is an urgent problem that researchers need to solve. Traditional SAR image quality assessment metrics analyze statistical error between the reference image and the jamming image only in the pixel domain; therefore, they cannot reflect the visual perceptual property of SAR jamming images effectively. In this demo, we develop a SAR image quality assessment system based on human visual perception for the application of aircraft electromagnetic countermeasures simulation platform.The internet of things and cloud computing techniques of big data are applied to our system. In the demonstration, we will present the assessment result interface of the SAR image quality assessment system. 展开更多
关键词 Synthetic APERTURE Radar (SAR) image quality assessment system human visual PERCEPTION internet of THINGS cloud computing
下载PDF
Target acquisition performance in the presence of JPEG image compression
20
作者 Boban Bondzulic Nenad Stojanovic +3 位作者 Vladimir Lukin Sergey A.Stankevich Dimitrije Bujakovic Sergii Kryvenko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期30-41,共12页
This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image... This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%. 展开更多
关键词 JPEG compression Target acquisition performance image quality assessment Just noticeable difference Probability of target detection Target mean searching time
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部