Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic s...Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies.展开更多
The article deals with the effects of urea and controlled release nitrogen fertilizer (CRNF) on dynamics of pH, electronic conductivity (EC), total nitrogen (TN), NH4^+-N and NO3 -N in floodwater, and the regul...The article deals with the effects of urea and controlled release nitrogen fertilizer (CRNF) on dynamics of pH, electronic conductivity (EC), total nitrogen (TN), NH4^+-N and NO3 -N in floodwater, and the regulation of runoff TN loss from paddy field-based two-cropping rice in Dongting Lake, China, and probes the best fertilization management for controlling N loss. Studies were conducted through modeling alluvial sandy loamy paddy soil (ASP) and purple calcareous clayey paddy soil (PCP) using lysimeter, following the sequence of the soil profiles identified by investigating soil profile. After application of urea in paddy field-based two-cropping rice, TN and NHa+-N concentrations in floodwater reached peak on the 1st and the 3rd day, respectively, and then decreased rapidly over time; all the floodwater NO3--N concentrations were very low; the pH of floodwater gradually rose in case of early rice within 15 d (late rice within 3 d) after application of urea, and EC remained consistent with the dynamics of NH4^+-N. The applied CRNF, especially 70% CRNF, led to significantly lower floodwater TN and NH4^+ concentrations, pH, and EC values compared with urea within 15 d after application. The monitoring result for N loss due to natural rainfall runoff indicated that the amount of TN lost in runoff from paddy field- based two-cropping rice with urea application in Dongting Lake area was 7.47 kg ha^-1, which accounted for 2.49% of urea- N applied, and that with CRNF and 70% CRNF application decreased 24.5 and 27.2% compared with urea application, respectively. The two runoff events, which occurred within 20 d after application, contributed significantly to TN loss from paddy field. TN loss due to the two runoffs in urea, CRNF, and 70% CRNF treatments accounted for 72, 70, and 58% of the total TN loss due to runoff over the whole rice growth season, respectively. And the TN loss in these two CRNF treatments due to the first run-off event at the 10th day after application to early rice decreased 44.9 and 44.2% compared with urea, respectively. In conclusion, the 15-d period after application of urea was the critical time during which N loss occurred due to high floodwater N concentrations. But CRNF decreased N concentrations greatly in floodwater and runoff water during this period. As a result, it obviously reduced TN loss in runoff over the whole rice growth season.展开更多
[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With c...[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With conventional Japonica rice cultivar Shengdao 18 as the study material, the effect of nitrogen dosage on stem and tillers dynamics, yield components and nitrogen use efficiency were investigated using the technology of dry soil preparation in rice paddy field. [Result] The highest yield was 10 957.20 kg/hm^2 as the nitrogen application was 315.00 kg/hm^2. Meanwhile, the roughness ratio, grain-straw ratio and nitrogen use efficiency remained at a higher level. Low nitrogen application could not obtain high yield. In contrast, high nitrogen application quantity led to a significant decline in nitrogen use efficiency. [Conclusion] The study could provide a scientific basis for the further promotion of the technology of dry soil preparation in rice paddy field.展开更多
In this study, a two-year experiment was conducted by suing a static chamber method to observe the effects of straw recycling of winter cover crops measure on CO2 emission fluxes in southern China. Three patterns of w...In this study, a two-year experiment was conducted by suing a static chamber method to observe the effects of straw recycling of winter cover crops measure on CO2 emission fluxes in southern China. Three patterns of winter use were performed in the paddy field, including RRR (rice-rice-ryegrass (Lolium multiflorum L.) cropping system), CRR (rice-rice-Chinese milk vetch (Astragalus sinicus L.) cropping system) and FRR (rice-rice cropping system with winter fallow). During the winter, the average daily CO2 fluxes were greater (P 〈 0.05) in the RRR and CRR than the FRR. During the winter crop growing seasons, both the average daily CO2 fluxes and the total CO2 emissions were different as the following orders: RRR 〉 CRR 〉 FRR. The average CO2 fluxes during early rice and late rice season were similar. The highest CO2 flux was found at rice tillering stage with an order as the follows: RRR 〉 CRR 〉 FRR and CRR 〉 RRR 〉 FRR both in 2009 and 2010, respectively. The annual CO2 emissions of RRR and CRR were significantly higher respectively by 857.0 g.CO2-C.m2 and 607.4 g.CO2-C.m-2 than the FRR. The results show that straw recycling of winter cover crops measure may strongly influence the CO2 emission in paddy field in southern China.展开更多
The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of s...The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.展开更多
From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilizat...From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilization or NPK combined with organic amendments.The field trials included NPK(N,P,K fertilizer),NPKRS(NPK combined with rice straw),NPK2RS(NPK combined with double amount of rice straw),NPKPM(NPK combined with pig manure) and NPKGM(NPK combined with green manure) and the cropping system was rice-rice(Oryza sativa L.) rotation.Annual rice yield,straw biomass,and harvesting index increased steadily with cultivation time in all treatments.Average annual rice yield from 1991 to 2006 was ranged from 7 795 to 8 572 kg ha-1 among treatments.Rice yields in treatments with organic amendments were usually higher than that in treatment with NPK.Contents of SOC and total N also increased gradually in the cultivation years and reached the level of 7.82 to 9.45 and 0.85 to 1.03 g kg-1,respectively,in 2006.Soil fertilities in treatments with chemical fertilization combined with organic amendments were relatively appropriate than those in treatment with NPK.There was obvious discrepancy between cumulative characters of rice yield and soil organic fertility in newly formed paddy field.Compared with relatively high rate of crop productivity improvement,cumulative rates of SOC and total N were much lower in our study.SOC and total N contents were still less than half of those in local highly productive paddy soils after 17 years cultivation in subtropical China.Present work helps to better understand the development of infertile paddy soils and to estimate the potential of yield improvement in this region.展开更多
Paddy field is a primary agricultural landscape in the south of China and is often regarded as one of main sources emitting nitrous oxide to atmosphere. The nitrous oxide emissions under a variety of paddy field pract...Paddy field is a primary agricultural landscape in the south of China and is often regarded as one of main sources emitting nitrous oxide to atmosphere. The nitrous oxide emissions under a variety of paddy field practices, such as fertilization, flooding/draining management were investigated to study on agricultural activities on paddy field affect the dynamic process of the emission. Under no addition of fertilizers the average emission flux of nitrous oxide was 8 55 μg/(m 2·h) during the rice( Oryza Sativa L.) growth season. The results indicated that most of nitrous oxide emissions occurred during the crack forming and expansion period when paddy field was being drained. The diurnal emissions peak of nitrous oxide appeared at 20∶30 at night in cracked rice fields. The statistical analysis suggested that the correlation of nitrous oxide emissions flux( Y ) with soil water content( X 1), soil temperature( X 2), and E h( X 3), could be described in a regression equation: Y =-1498 95+2895 48 X 1+50 63 X 2-96 99 X 1· X 2+0 006 X 2· X 3 There were the different power equations to simulate the correlations between the everyday dynamic N 2O emissions and the mean surface area of cracks, mean volume and depth of cracks respectively during paddy soil drying by soil columns incubation experiments. Taken all together, the current study presented a dynamic analysis of nitrous oxide emission of paddy field under various conditions, therefore provided a basis for the management to balance between environmental effect and paddy field activities.展开更多
From a perspective of cultivation measures, it was needed to develop a new paddy impoundment model to achieve higher rice yield with higher water utilization efficiency. This study was conducted to quantify the effect...From a perspective of cultivation measures, it was needed to develop a new paddy impoundment model to achieve higher rice yield with higher water utilization efficiency. This study was conducted to quantify the effect of ridge- tillage terrace ecological rice farming (RT), bed ecological rice farming (B) and conventional ecological rice farming (CK) on the paddy impoundment model and rice yield, and determine dry matter accumulation (DMA), rice yield, yield component, and parameters of the ridge tillage and the bed. The RT could be used to achieve the dual improvement in the capacity of natural precipitation storage and in soil aeration by dry-wet alternation damp irrigation. Water storage capacity in the RT was 29% higher than that of the CK and most of the water was stored in the ditch. The grain yield of each of different rice cultivars (except the cultivar Huanghuazhan in 2011) in the RT was significantly higher than that of the CK. The total DMA in the RT was 16.5% in 2011 and 28.2% in 2012 higher than that of the CK, respectively. The variation of DMA before and after the full-heading stage among rice cultivars was inconsistent. Consequently, the RT was an effective measurement of micro- topographic reestablishment for changing paddy impoundment model, increasing water storage capacity, especially the natural precipitation storage, and increasing rice yield.展开更多
This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics impr...This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling.展开更多
Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient ...Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient paddy soils, (2) compare the difference of soil fertility between ancient paddy soils and recent paddy soils, and (3) inquire into mechanisms of the sustainability of paddy soil. The oldest paddy soils at Chuodun site can be dated back to Neolithic age, around 6000 aBP. These ancient fields were buried in about 1-m deep from the soil surface and their areas ranged from 0.32 to 12.9 m^2 with an average of 5.2 m^2. The paddy soils with 〉 5 000 pellets phytolith g^-1 soil were termed intensively cultivated paddy soils (ICPS) and those with 〈5000 pellets phytolith g^-1 soil were called weakly cultivated soils (WCPS). The contents of organic carbon (OC), and total N in the former were significantly higher than that in the latter. Ancient paddy soils had higher soil pH and C/N, total and available P, and lower contents of OC, DOC, total N, S, Cu, Fe, and available K, S, Fe, Mn, and Cu compared with recent paddy soils, which were attributed to application of chemical and manure fertilizers, pollution and acidification in recent paddy soils. The variation coefficients of OC and other nutrients in ancient paddy soils with higher PI were greater than that in ancient paddy soils with low PI, which indicated that human activities had a great impact on the spatial variability of soil nutrients. The contents of OC, total N, P and S in ancient paddy soils were higher than that in ancient moss of the same age, which indicated that planting rice during Majiabang culture period was beneficial to the accumulation of those life elements.展开更多
Increasing attentions have been paid to mineral concentration decrease in milled rice grains caused by CO2 enrichment, but the mechanisms still remain unclear. Therefore, mineral (Ca, Mg, Fe, Zn and Mn) translocatio...Increasing attentions have been paid to mineral concentration decrease in milled rice grains caused by CO2 enrichment, but the mechanisms still remain unclear. Therefore, mineral (Ca, Mg, Fe, Zn and Mn) translocation in plant-soil system with a FACE (Free-air CO2 enrichment) experiment were investigated in Eastern China after 4-yr operation. Results mainly showed that: (1) elevated CO2 significantly increased the biomass of stem and panicle by 21.9 and 24.0%, respectively, but did not affect the leaf biomass. (2) Elevated CO2 significantly increased the contents of Ca, Mg, Fe, Zn, and Mn in panicle by 61.2, 28.9, 87.0, 36.7, and 66.0%, respectively, and in stem by 13.2, 21.3, 47.2, 91.8, and 25.2%, respectively, but did not affect them in leaf. (3) Elevated CO2 had positive effects on the weight ratio of mineral/biomass in stem and panicle. Our results suggest that elevated CO2 can favor the translocation of Ca, Mg, Fe, Zn, and Mn from soil to stem and panicle. The CO2-led mineral decline in milled rice grains may mainly attribute to the CO2-1ed unbalanced stimulations on the translocations of minerals and carbohydrates from vegetative parts (e.g., leaf, stem, branch and husk) to the grains.展开更多
Soil heavy metal pollution is becoming more and more serious.Biomass charcoal application can play an important role in alleviating the toxicity of heavy metals in soils.Compared with other biochar,bamboo charcoal has...Soil heavy metal pollution is becoming more and more serious.Biomass charcoal application can play an important role in alleviating the toxicity of heavy metals in soils.Compared with other biochar,bamboo charcoal has more unique properties and may have a unique effect on heavy metal pollution.Zhejiang Province of Southeastern China is rich in bamboo resources.However,few studies related to bamboo charcoal application for heavy metal remediation in farmland were reported.In this study,four treatments with different amounts of bamboo charcoal application were set up through a field experiment,namely BC0(no bamboo charcoal application),BC1(2500 kg⋅ha^(−1)),BC2(5000 kg⋅ha^(−1)),and BC3(10000 kg⋅ha^(−1)),and each treatment was replicated three times.The results showed that(1)The application of bamboo charcoal significantly increased the soil pH and organic matter content.Compared with BC0,the pH and organic content of BC3 increased by 7.4%and 17.4%(P<0.05)respectively.(2)The HCl-extractable Cd content of paddy soil in the BC1 treatment was significantly lower than other treatments(P<0.05),and decreased by 15.3%,compared with BC0.The soil HCl-extractable Zn and Cu content did not differ significantly between treatments(P>0.05).(3)With the increase of bamboo charcoal application,the Cd content in rice gradually decreased,the BC3 treatment significantly decreased by 39.0%(P<0.05),and the Zn and Cu contents in rice did not differ significantly between treatments(P>0.05),compared with BC0.(4)Soil pH,organic matter and Cd in rice seeds were significantly negatively correlated(P<0.01).The heavy metal content in rice does not change with the change of heavy metal content with HCl-extractable state in soil.It means bamboo charcoal does not reduce heavy metal content in rice by simply declining the heavy metal content with HCl-extractable state.The mechanism of action is relatively complicated,and further study is needed.展开更多
基金financially supported by the the National Key Research and Development Program of China(2016YFD0300104)the Heilongjiang Bayi Agricultural University Program for Young Scholars with Creative Talents,China(CXRC2017001)+1 种基金the Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong,China(TDJH201802)the Graduate Innovative Research Projects,China(YJSCX2019-Y104)。
文摘Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies.
基金We acknowledge the support from the Phosphorus and Potassium Institute in Canada with China scheme (Canada-Sino Cooperation Project: HN- 13) and from the National Natural Science Foundation of China (30270770).
文摘The article deals with the effects of urea and controlled release nitrogen fertilizer (CRNF) on dynamics of pH, electronic conductivity (EC), total nitrogen (TN), NH4^+-N and NO3 -N in floodwater, and the regulation of runoff TN loss from paddy field-based two-cropping rice in Dongting Lake, China, and probes the best fertilization management for controlling N loss. Studies were conducted through modeling alluvial sandy loamy paddy soil (ASP) and purple calcareous clayey paddy soil (PCP) using lysimeter, following the sequence of the soil profiles identified by investigating soil profile. After application of urea in paddy field-based two-cropping rice, TN and NHa+-N concentrations in floodwater reached peak on the 1st and the 3rd day, respectively, and then decreased rapidly over time; all the floodwater NO3--N concentrations were very low; the pH of floodwater gradually rose in case of early rice within 15 d (late rice within 3 d) after application of urea, and EC remained consistent with the dynamics of NH4^+-N. The applied CRNF, especially 70% CRNF, led to significantly lower floodwater TN and NH4^+ concentrations, pH, and EC values compared with urea within 15 d after application. The monitoring result for N loss due to natural rainfall runoff indicated that the amount of TN lost in runoff from paddy field- based two-cropping rice with urea application in Dongting Lake area was 7.47 kg ha^-1, which accounted for 2.49% of urea- N applied, and that with CRNF and 70% CRNF application decreased 24.5 and 27.2% compared with urea application, respectively. The two runoff events, which occurred within 20 d after application, contributed significantly to TN loss from paddy field. TN loss due to the two runoffs in urea, CRNF, and 70% CRNF treatments accounted for 72, 70, and 58% of the total TN loss due to runoff over the whole rice growth season, respectively. And the TN loss in these two CRNF treatments due to the first run-off event at the 10th day after application to early rice decreased 44.9 and 44.2% compared with urea, respectively. In conclusion, the 15-d period after application of urea was the critical time during which N loss occurred due to high floodwater N concentrations. But CRNF decreased N concentrations greatly in floodwater and runoff water during this period. As a result, it obviously reduced TN loss in runoff over the whole rice growth season.
文摘[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With conventional Japonica rice cultivar Shengdao 18 as the study material, the effect of nitrogen dosage on stem and tillers dynamics, yield components and nitrogen use efficiency were investigated using the technology of dry soil preparation in rice paddy field. [Result] The highest yield was 10 957.20 kg/hm^2 as the nitrogen application was 315.00 kg/hm^2. Meanwhile, the roughness ratio, grain-straw ratio and nitrogen use efficiency remained at a higher level. Low nitrogen application could not obtain high yield. In contrast, high nitrogen application quantity led to a significant decline in nitrogen use efficiency. [Conclusion] The study could provide a scientific basis for the further promotion of the technology of dry soil preparation in rice paddy field.
基金This study was supported by the Hunan ProvincialNatural Science Foundation of China (No. 12JJ4022), and the Public Research Funds Projects of Agriculture, Ministry of Agriculture of China (No. 201103001).
文摘In this study, a two-year experiment was conducted by suing a static chamber method to observe the effects of straw recycling of winter cover crops measure on CO2 emission fluxes in southern China. Three patterns of winter use were performed in the paddy field, including RRR (rice-rice-ryegrass (Lolium multiflorum L.) cropping system), CRR (rice-rice-Chinese milk vetch (Astragalus sinicus L.) cropping system) and FRR (rice-rice cropping system with winter fallow). During the winter, the average daily CO2 fluxes were greater (P 〈 0.05) in the RRR and CRR than the FRR. During the winter crop growing seasons, both the average daily CO2 fluxes and the total CO2 emissions were different as the following orders: RRR 〉 CRR 〉 FRR. The average CO2 fluxes during early rice and late rice season were similar. The highest CO2 flux was found at rice tillering stage with an order as the follows: RRR 〉 CRR 〉 FRR and CRR 〉 RRR 〉 FRR both in 2009 and 2010, respectively. The annual CO2 emissions of RRR and CRR were significantly higher respectively by 857.0 g.CO2-C.m2 and 607.4 g.CO2-C.m-2 than the FRR. The results show that straw recycling of winter cover crops measure may strongly influence the CO2 emission in paddy field in southern China.
基金supported by the Science and Technology Consulting Program of Chinese Academy of Engineering(2015-XY-25)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2014BAD02B06-02)+2 种基金the Special Fund for Agro-scientific Research in Public Interest of China(201303095)the Basic Research Foundation of Shenyang Science and Technology Program,China(F16-205-1-38)the Program for Changjiang Scholars and Innovative Research Team in University,China(IRT13079)
文摘The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.
基金supported by the National Basic Research Program of China (2007CB109301)the National Natural Science Foundation of China (40871122) the National Key Technology R&D Program of China (2009BADC6B03)
文摘From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilization or NPK combined with organic amendments.The field trials included NPK(N,P,K fertilizer),NPKRS(NPK combined with rice straw),NPK2RS(NPK combined with double amount of rice straw),NPKPM(NPK combined with pig manure) and NPKGM(NPK combined with green manure) and the cropping system was rice-rice(Oryza sativa L.) rotation.Annual rice yield,straw biomass,and harvesting index increased steadily with cultivation time in all treatments.Average annual rice yield from 1991 to 2006 was ranged from 7 795 to 8 572 kg ha-1 among treatments.Rice yields in treatments with organic amendments were usually higher than that in treatment with NPK.Contents of SOC and total N also increased gradually in the cultivation years and reached the level of 7.82 to 9.45 and 0.85 to 1.03 g kg-1,respectively,in 2006.Soil fertilities in treatments with chemical fertilization combined with organic amendments were relatively appropriate than those in treatment with NPK.There was obvious discrepancy between cumulative characters of rice yield and soil organic fertility in newly formed paddy field.Compared with relatively high rate of crop productivity improvement,cumulative rates of SOC and total N were much lower in our study.SOC and total N contents were still less than half of those in local highly productive paddy soils after 17 years cultivation in subtropical China.Present work helps to better understand the development of infertile paddy soils and to estimate the potential of yield improvement in this region.
文摘Paddy field is a primary agricultural landscape in the south of China and is often regarded as one of main sources emitting nitrous oxide to atmosphere. The nitrous oxide emissions under a variety of paddy field practices, such as fertilization, flooding/draining management were investigated to study on agricultural activities on paddy field affect the dynamic process of the emission. Under no addition of fertilizers the average emission flux of nitrous oxide was 8 55 μg/(m 2·h) during the rice( Oryza Sativa L.) growth season. The results indicated that most of nitrous oxide emissions occurred during the crack forming and expansion period when paddy field was being drained. The diurnal emissions peak of nitrous oxide appeared at 20∶30 at night in cracked rice fields. The statistical analysis suggested that the correlation of nitrous oxide emissions flux( Y ) with soil water content( X 1), soil temperature( X 2), and E h( X 3), could be described in a regression equation: Y =-1498 95+2895 48 X 1+50 63 X 2-96 99 X 1· X 2+0 006 X 2· X 3 There were the different power equations to simulate the correlations between the everyday dynamic N 2O emissions and the mean surface area of cracks, mean volume and depth of cracks respectively during paddy soil drying by soil columns incubation experiments. Taken all together, the current study presented a dynamic analysis of nitrous oxide emission of paddy field under various conditions, therefore provided a basis for the management to balance between environmental effect and paddy field activities.
文摘From a perspective of cultivation measures, it was needed to develop a new paddy impoundment model to achieve higher rice yield with higher water utilization efficiency. This study was conducted to quantify the effect of ridge- tillage terrace ecological rice farming (RT), bed ecological rice farming (B) and conventional ecological rice farming (CK) on the paddy impoundment model and rice yield, and determine dry matter accumulation (DMA), rice yield, yield component, and parameters of the ridge tillage and the bed. The RT could be used to achieve the dual improvement in the capacity of natural precipitation storage and in soil aeration by dry-wet alternation damp irrigation. Water storage capacity in the RT was 29% higher than that of the CK and most of the water was stored in the ditch. The grain yield of each of different rice cultivars (except the cultivar Huanghuazhan in 2011) in the RT was significantly higher than that of the CK. The total DMA in the RT was 16.5% in 2011 and 28.2% in 2012 higher than that of the CK, respectively. The variation of DMA before and after the full-heading stage among rice cultivars was inconsistent. Consequently, the RT was an effective measurement of micro- topographic reestablishment for changing paddy impoundment model, increasing water storage capacity, especially the natural precipitation storage, and increasing rice yield.
基金Supported by Jiangxi Agricultural University Students’Platform for Innovation and Entrepreneurship Training Program(DC201305)Key Projects in the National Science&Technology Pillar Program(2012BAD14B14-01)~~
文摘This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling.
基金The study was funded by the National Natural Science Foundation of China(40335047).We thank Professor Xu Zhihong,the Faculty of Environmental Science,Griffith University,Australia,for revising this manuscript.
文摘Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient paddy soils, (2) compare the difference of soil fertility between ancient paddy soils and recent paddy soils, and (3) inquire into mechanisms of the sustainability of paddy soil. The oldest paddy soils at Chuodun site can be dated back to Neolithic age, around 6000 aBP. These ancient fields were buried in about 1-m deep from the soil surface and their areas ranged from 0.32 to 12.9 m^2 with an average of 5.2 m^2. The paddy soils with 〉 5 000 pellets phytolith g^-1 soil were termed intensively cultivated paddy soils (ICPS) and those with 〈5000 pellets phytolith g^-1 soil were called weakly cultivated soils (WCPS). The contents of organic carbon (OC), and total N in the former were significantly higher than that in the latter. Ancient paddy soils had higher soil pH and C/N, total and available P, and lower contents of OC, DOC, total N, S, Cu, Fe, and available K, S, Fe, Mn, and Cu compared with recent paddy soils, which were attributed to application of chemical and manure fertilizers, pollution and acidification in recent paddy soils. The variation coefficients of OC and other nutrients in ancient paddy soils with higher PI were greater than that in ancient paddy soils with low PI, which indicated that human activities had a great impact on the spatial variability of soil nutrients. The contents of OC, total N, P and S in ancient paddy soils were higher than that in ancient moss of the same age, which indicated that planting rice during Majiabang culture period was beneficial to the accumulation of those life elements.
基金supported by the National Natural Science Foundation of China (31200369)the Lecture and Study for Outstanding Scholars from Home and Abroad,Chinese Academy of Forestry (CAF),2014
文摘Increasing attentions have been paid to mineral concentration decrease in milled rice grains caused by CO2 enrichment, but the mechanisms still remain unclear. Therefore, mineral (Ca, Mg, Fe, Zn and Mn) translocation in plant-soil system with a FACE (Free-air CO2 enrichment) experiment were investigated in Eastern China after 4-yr operation. Results mainly showed that: (1) elevated CO2 significantly increased the biomass of stem and panicle by 21.9 and 24.0%, respectively, but did not affect the leaf biomass. (2) Elevated CO2 significantly increased the contents of Ca, Mg, Fe, Zn, and Mn in panicle by 61.2, 28.9, 87.0, 36.7, and 66.0%, respectively, and in stem by 13.2, 21.3, 47.2, 91.8, and 25.2%, respectively, but did not affect them in leaf. (3) Elevated CO2 had positive effects on the weight ratio of mineral/biomass in stem and panicle. Our results suggest that elevated CO2 can favor the translocation of Ca, Mg, Fe, Zn, and Mn from soil to stem and panicle. The CO2-led mineral decline in milled rice grains may mainly attribute to the CO2-1ed unbalanced stimulations on the translocations of minerals and carbohydrates from vegetative parts (e.g., leaf, stem, branch and husk) to the grains.
基金the Key Research and Development Plan of Zhejiang Province(No.2019C02008-03).
文摘Soil heavy metal pollution is becoming more and more serious.Biomass charcoal application can play an important role in alleviating the toxicity of heavy metals in soils.Compared with other biochar,bamboo charcoal has more unique properties and may have a unique effect on heavy metal pollution.Zhejiang Province of Southeastern China is rich in bamboo resources.However,few studies related to bamboo charcoal application for heavy metal remediation in farmland were reported.In this study,four treatments with different amounts of bamboo charcoal application were set up through a field experiment,namely BC0(no bamboo charcoal application),BC1(2500 kg⋅ha^(−1)),BC2(5000 kg⋅ha^(−1)),and BC3(10000 kg⋅ha^(−1)),and each treatment was replicated three times.The results showed that(1)The application of bamboo charcoal significantly increased the soil pH and organic matter content.Compared with BC0,the pH and organic content of BC3 increased by 7.4%and 17.4%(P<0.05)respectively.(2)The HCl-extractable Cd content of paddy soil in the BC1 treatment was significantly lower than other treatments(P<0.05),and decreased by 15.3%,compared with BC0.The soil HCl-extractable Zn and Cu content did not differ significantly between treatments(P>0.05).(3)With the increase of bamboo charcoal application,the Cd content in rice gradually decreased,the BC3 treatment significantly decreased by 39.0%(P<0.05),and the Zn and Cu contents in rice did not differ significantly between treatments(P>0.05),compared with BC0.(4)Soil pH,organic matter and Cd in rice seeds were significantly negatively correlated(P<0.01).The heavy metal content in rice does not change with the change of heavy metal content with HCl-extractable state in soil.It means bamboo charcoal does not reduce heavy metal content in rice by simply declining the heavy metal content with HCl-extractable state.The mechanism of action is relatively complicated,and further study is needed.