期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Effects of Subsoiling on Soil Moisture Under No-Tillage for Two Years 被引量:32
1
作者 QIN Hong-ling GAO Wang-sheng +4 位作者 MA Yue-cun MA Li YIN Chun-mei CHEN Zhe CHEN Chun-lan 《Agricultural Sciences in China》 CAS CSCD 2008年第1期88-95,共8页
In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under notillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for ... In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under notillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for 2 years was operated from 2005 to 2006. Based on the data of the soil moisture and crop yield, the physical basis of subsoiling for water conservation and yield increase was analyzed. The results showed that the soil water storage under subsoiling, from the soil surface to a depth of 100 cm was more than that under no-tillage for the growth season. In the 0-100 cm soil depth, the soil moisture in 50-100 cm depth under subsoiling was more compared with no-tillage, which increased when it's drought and decreased when it's rainy with the increase in soil depth. Compared with no-tillage, subsoiling could reduce the water consumption of oats in the 0-50 cm depth and increase the water consumption in the 50-100 cm depth. Also, subsoiling increased the yield by 18.29% and the water use efficiency by 16.8% in a two-year average. The effects of subsoiling on water conservation and yield increase were affected by precipitation, and a well-proportioned rainfall was better to increase yield and water use efficiency. Meanwhile, subsoiling decreased bulk density, which increased with the available precipitation. Subsoiling under no-tillage is the effective rotation tillage to contain more soil moisture and improve water use efficiency in ecotone of North China. 展开更多
关键词 no-tillage SUBSOILING water conservation yield increasing
下载PDF
Inter-annual changes in the aggregate-size distribution and associated carbon of soil and their effects on the straw-derived carbon incorporation under long-term no-tillage 被引量:8
2
作者 YIN Tao ZHAO Cai-xia +2 位作者 YAN Chang-rong DU Zhang-liu HE Wen-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第11期2546-2557,共12页
Converting from conventional tillage to no-tillage influences the soil aggregate-size distribution and thus soil organic carbon (SOC) stabilization. However, the dynamics of soil aggregation and the straw-derived ca... Converting from conventional tillage to no-tillage influences the soil aggregate-size distribution and thus soil organic carbon (SOC) stabilization. However, the dynamics of soil aggregation and the straw-derived carbon (C) incorporation within aggregate fractions are not well understood. An experiment was established in 2004 to test the effects of two treatments, no-tillage with residue (NT) and conventional tillage without residue (CT), on the soil aggregate-size distribution and SOC stabilization in a continuous maize (Zea mays L.) cropping system located in the semiarid region of northern China. Soil samples were collected from the 0-10 cm layer in 2008, 2010 and 2015, and were separated into four aggregate-size classes (〉2, 0.25-2, 0.053-0.25, and 〈0.053 mm) by wet-sieving. In each year, NT soil had a higher proportion of macroaggregates (i.e., 〉2 and 0.25-2 mm) and associated SOC concentration compared with CT. Additionally, to compare straw-derived C incorporation within NT and CT aggregate fractions, ^13C-labeled straw was incubated with intact NT and CT soils. After 90 days, the highest proportion of 13C-labeled straw-derived C was observed in the 〉2 mm fraction, and this proportion was lower in NT than that in CT soil. Overall, we conclude that long-term continuous NT increased the proportion of macroaggregates and the C concentration within macroaggregates, and the physical protection provided by NT is beneficial for soil C sequestration in the continuous maize cropping system in semiarid regions of northern China. 展开更多
关键词 no-tillage aggregate-size distribution aggregate-associated carbon ^13C-labeled straw
下载PDF
Effect of experimental warming on soil respiration under conventional tillage and no-tillage farmland in the North China Plain 被引量:6
3
作者 TU Chun LI Fa-dong +3 位作者 QIAO Yun-feng ZHU Nong GU Cong-ke ZHAO Xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第4期967-979,共13页
Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT... Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT) and no-tillage (NT) farmland for winter wheat and summer maize rotation system in North China Plain (NCP). Treatments include CT with and without warming (CTW and CTN), NT with and without warming (NTW and NTN). The results indicated that warming had no sig- nificant effect on soil moisture in irrigated farmland of NCP (P〉0.05). The elevated average soil temperature of 1.1-116℃ in crop growing periods could increase annual soil CO2 emission by 10.3% in CT filed (P〉0.05), but significantly increase it by 12.7% in NT field (P〈0.05), respectively. The disturbances such as plowing, irrigation and precipitation resulted in the obvious soil CO2 emission peaks, which contributed 36.6-40.8% of annual soil cumulative CO2 emission. Warming would enhance these soil CO2 emission peaks; it might be associated with the warming-induced increase of autotrophic respiration and heterotrophic respiration. Compared with un-warming treatments, dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) in warming treatments were significantly increased by 11.6-23.4 and 12.9-23.6%, respectively, indicating that the positive responses of DOC and MBC to warming in both of two tillage systems. Our study highlights that climate warming may have positive effects on soil C release in NCP in association with response of labile C substrate to warming. 展开更多
关键词 global warming conventional tillage no-tillage soil respiration dissolved organic carbon soil microbial biomasscarbon
下载PDF
Characterization of Leaf Photosynthetic Properties for No-Tillage Rice 被引量:5
4
作者 CHEN Song XIA Guo-mian +2 位作者 ZHAO Wei-ming WU Fei-bo ZHANG Guo-ping 《Rice science》 SCIE 2007年第4期283-288,共6页
A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carrie... A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carried out at three locations (Jiaxing, Hangzhou and Xiaoshan, Zhejiang Province, China) for two years (2005 and 2006). Grain yield was constant in Jiaxing, but slightly higher in Hangzhou and Xiaoshan under no-tillage cultivation than that under conventional cultivation. In comparison with the conventional cultivation, no-tillage cultivation showed less biomass accumulation before heading and higher capacity of matter production during grain filling. A significantly higher leaf net photosynthetic rate was observed for the plants under no-tillage than for those under conventional tillage. The fluorescence parameter (Fv/Fm) in leaf did not show any difference between the two cultivations. The effect of cultivation management on transpiration rate (Tr) and SPAD value of rice leaf was dependent on the location and year. 展开更多
关键词 PHOTOSYNTHESIS LEAF RICE no-tillage PLOUGH YIELD
下载PDF
Growth Characteristics and Yield of Late-Season Rice under No-tillage and Non-flooded Cultivation with Straw Mulching 被引量:4
5
作者 WANG Dong LI Hui-xin +2 位作者 QIN Jiang-tao LI Da-ming Hu Feng 《Rice science》 SCIE 2010年第2期141-148,共8页
A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping sys... A long-term field experiment (started at 2003) was conducted to determine the effects of different dce cultivation methods on growth characteristics and grain yield of late-season rice under double-rice cropping system in seasonal drought region of southeast China (Yujiang County, Jiangxi Province). The rice cultivation methods included no-tillage and flooded rice cultivation (N-F), no-tillage and non-flooded rice cultivation with straw mulching (N-SM), and no-tillage and non-flooded rice cultivation without straw mulching (N-ZM). There was no significant difference in rice grain yield between the N-SM and N-F treatments. However, the rice grain yields in the N-SM and N-F treatments were significantly higher than that in the N-ZM treatment. The late-season rice plants in the N-SM treatment had significantly higher numbers of effective panicles and total grains per hill compared with those in the N-ZM treatment. The above-ground dry matter of late-season rice was similar between the N-SM and N-F treatments. Compared with the N-F treatment, the N-ZM and N-SM treatments significantly decreased the leaf area at the heading stage. Moreover, the N-SM treatment could significantly increase total root length and root tip number at the grain-filling stage compared with the N-ZM treatment. 展开更多
关键词 RICE no-tillage non-flooded cultivation straw mulching growth characteristics YIELD
下载PDF
Suppression of weeds and weed seeds in the soil by stubbles and no-tillage in an arid maize-winter wheat-common vetch rotation on the Loess Plateau of China 被引量:1
6
作者 YANG Mei ZHAO Yuxin +2 位作者 YANG Huimin SHEN Yuying ZHANG Xiaoyan 《Journal of Arid Land》 SCIE CSCD 2018年第5期809-820,共12页
Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, hi... Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, high abundances of weeds in reduced tillage systems cause significant yield losses. In this study, we explored the effects of no-tillage and stubble retention on the number and density of weeds and weed seeds in a 12-year maize-winter wheat-common vetch rotation on the Loess Plateau. Four treatments including conventional tillage, no-tillage, conventional tillage+stubble retention and no-tillage+stubble retention were designed and applied. We found that no-tillage increased the number of weed species and weed density in most of the crops, while stubble retention decreased weed density in maize and tended to suppress weeds in both no-tillage treatments(no-tillage and no-tillage+stubble retention). No-tillage led to an increase in the number of weed species in the weed seedbank and tended to increase seed density during the spring growth of winter wheat, but it decreased seed density during post-vetch fallow. Stubble retention tended to reduce seed density during the spring growth of winter wheat and post-vetch fallow. We concluded that no-tillage can promote weeds in the experimental crop rotation, while stubble retention suppresses weeds in untilled fields. The combined effects of stubble retention and no-tillage on weed suppression varied among the three crops. Based on these results, we recommend stubble retention in untilled legume-crop rotations on the Loess Plateau to improve the control of weeds. 展开更多
关键词 agricultural conservation practice crop rotation no-tillage rainfed soil soil seedbank stubble retention weed control
下载PDF
Long-Term No-Tillage Direct Seeding Mode for Water-Saving and Drought-Resistance Rice Production in Rice-Rapeseed Rotation System 被引量:1
7
作者 DU Xing-bin CHEN Chen +4 位作者 LUO Li-jun XIA Long-ping LIU Kang CHEN Yin-hua YU Xin-qiao 《Rice science》 SCIE 2014年第4期210-216,共7页
To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistan... To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer. 展开更多
关键词 no-tillage direct seeding rice yield soil physiochemical property water-saving and drought-resistance rice rotation system
下载PDF
No-tillage effects on grain yield and nitrogen requirements in hybrid rice transplanted with single seedlings: Results of a long-term experiment
8
作者 HUANG Min CHEN Jia-na +2 位作者 CAO Fang-bo ZOU Ying-bin Norman Uphoff 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第1期24-32,共9页
This study was conducted to determine whether,and if so how,the grain yield and nitrogen(N) requirements of hybrid rice transplanted as single seedlings are affected by no-tillage(NT) practices.A fixed field experimen... This study was conducted to determine whether,and if so how,the grain yield and nitrogen(N) requirements of hybrid rice transplanted as single seedlings are affected by no-tillage(NT) practices.A fixed field experiment was done at the Experimental Farm of Hunan Agricultural University in Changsha,Hunan Province,China,from 2004 to 2014.Grain yield and yield attributes(panicle number per m2,spikelet number per panicle,spikelet filling percentage,grain weight,total biomass,and harvest index) were evaluated as well as the N-use characteristics(total N uptake,internal N-use efficiency,and N requirements) of hybrid rice transplanted as single seedlings comparing NT with conventional tillage(CT).A significant finding was that there were no significant differences in grain yield,yield attributes,and N-use characteristics between CT and NT.Averaged across the 11 years,grain yield and N requirements were 9.51 t ha^(-1) and 20.2 kg t^(-1) under CT and 9.33 t ha^(-1) and 20.0 kg t^(-1) under NT,respectively.There were significant yearly variations in grain yield,yield attributes,and N-use characteristics observed under both CT and NT.The yearly variation in grain yield was related to simultaneous changes in spikelet number per panicle,grain weight,total biomass,and harvest index.Also,it was found that grain yield was positively correlated with internal N-use efficiency but negatively correlated with N requirements.It is concluded that grain yield and N requirements in hybrid rice when transplanted as single seedlings are not affected adversely by NT.The results of this study suggest that(1) compatible relationships among yield attributes can be established in hybrid rice that is transplanted as single seedlings,and(2) higher grain yield and higher N-use efficiency can be concurrently achieved in hybrid rice transplanted as single seedlings. 展开更多
关键词 grain yield hybrid rice NITROGEN requirements no-tillage TRANSPLANTING of single seedlings
下载PDF
Physiological Mechanism of High and Stable Yield of No-tillage Cast-transplanted Rice
9
作者 LIU Jun, HUANG Qing, FU Hua, LU Xiu-ming, LIU Huai-zhen and LI Kang-huo( Rice Research Institute , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , P.R. China) 《Agricultural Sciences in China》 CAS CSCD 2002年第4期404-409,共6页
Four years' successive comparative experiments showed that no-tillage cast-transplanted rice (NTCTR), compared with conventional tillage cast-transplanted rice (CK), grew slower and produced less tillers at the ea... Four years' successive comparative experiments showed that no-tillage cast-transplanted rice (NTCTR), compared with conventional tillage cast-transplanted rice (CK), grew slower and produced less tillers at the early growing stage; but, it had shorter ineffective tillering time, less nutrition consumption, stronger individual growth and more uniform growth between individuals and the colony. These characteristics contribute to the increase not only in the productive tiller percentage but also in the ear quality. Furthermore, the flag leaf of NTCTR had higher photosynthetic rate during the filling stage and no early senescence phenomenon at the late stage, which facilitated the accumulation and the transportation of carbohydrates and improved grain setting rate. 展开更多
关键词 RICE no-tillage cast-transplanted rice(NTCTR) PHYSIOLOGY
下载PDF
Effects of Five Years Adoption of No-Tillage Systems for Vegetables Crops in Soil Organic Matter Contents
10
作者 Carlos E. P. Lima ítalo M. R. Guedes +4 位作者 Juscimar da Silva Flávia A. Alcantara Nuno R. Madeira Agnaldo D. F. Carvalho Mariana R. Fontenelle 《Agricultural Sciences》 2018年第1期117-128,共12页
Vegetables productions systems are done normally with intense soil tillage causing a strong decline of soil quality. Use of conservation systems can be an alternative to recover this quality. In order to evaluate the ... Vegetables productions systems are done normally with intense soil tillage causing a strong decline of soil quality. Use of conservation systems can be an alternative to recover this quality. In order to evaluate the effects of such systems on soil organic matter, an experiment has been conducted in randomized blocks design and factorial scheme 3 × 2: three soil management systems (no-tillage;reduced tillage and conventional tillage) and two cover crops (maize single;and intercropping maize with gray velvet bean—Stizolobium niveum);and repeated measures over time. Soil samples were collected before the implementation of the experiment and at the end of each crop cycle until the fifth crop cycle. Carbon associated with humic substances is also determined in 0 - 5 cm, 5 - 10 cm and 10 - 30 cm at the end of the last crop cycle. The SOM content was higher in RT (48.34 g·kg-1) than in the CT (39.48 g·kg-1) at the end of the fifth crop cycle. SOM content in NT (44.92 g·kg-1) was statistically equal to RT and CT, during the same period. In 0 - 5 cm, carbon contents associated to the humic substances present the same behavior of SOM contents in 0 - 10 cm. Probably these results are associated with the capacity of each system to improve superficial contents of SOM stable fractions. It follows that the conservation systems used are alternatives to the cultivation vegetables in order to improve soil organic matter contents. 展开更多
关键词 no-tillage Reduced TILLAGE SOIL Conservation SOIL Management
下载PDF
Residue Return Effects Outweigh Tillage Effects on Soil Microbial Communities and Functional Genes in Black Soil Region of Northeast China
11
作者 WANG Qian JIA Shuxia +6 位作者 LIANG Aizhen CHEN Xuewen ZHANG Shixiu ZHANG Yan Neil B MCLAUGHLIN GAO Yan HUANG Dandan 《Chinese Geographical Science》 SCIE CSCD 2023年第4期679-692,共14页
Conservation tillage as an effective alternative to mitigate soil degradation has attracted worldwide attention,but the influences of conservation tillage on soil microbial community and especially function remain unc... Conservation tillage as an effective alternative to mitigate soil degradation has attracted worldwide attention,but the influences of conservation tillage on soil microbial community and especially function remain unclear.Shotgun metagenomics sequencing was performed to examine the taxonomic and functional community variations of black soils under three tillage regimes,namely no-tillage with residue(maize straw)return(NTS),moldboard plow with residue return(MPS),and moldboard plow without residue return(MPN)in Northeast China.The results revealed:1)Soil bacterial and archaeal communities differed significantly under different tillage regimes in contrast to soil fungal community.2)The overlay of less tillage and residues return under NTS led to unique soil microbial community composition and functional composition.Specifically,in contrast to other treatments,NTS increased the relative abundances of some taxa such as Bradyrhizobium,Candidatus Solibacter,and Reyranella,along with the relative abundances of some taxa such as Sphingomonas,Unclassified Chloroflexi and Nitrososphaera decreased;NTS had a unique advantage of increasing the relative abundances of genes involved in‘ATP-binding cassette(ABC)transporters’and‘quorum sensing(QS)’pathways,while MPN favored the genes involved in‘flagellar assembly’pathway and some metabolic pathways such as‘carbon’and‘glyoxylate and dicarboxylate’and‘selenocompound’metabolisms.3)Significantly different soil bacterial phyla(Acidobacteria,Gemmatimonadetes,and Chloroflexi)and metabolic pathways existed between MPN and another two treatments(NTS and MPS),while did not exist between NTS and MPS.4)Dissolved organic carbon(DOC)and soil bulk density were significantly affected(P<0.05)by tillage and accounted for the variance both in microbial(bacterial)community structure and functional composition.These results indicated that a change in tillage regime from conventional to conservation tillage results in a shift of microbial community and functional genes,and we inferred that residue return played a more prominent role than less tillage in functional shifts in the microbial community of black soils. 展开更多
关键词 no-tillage microbial community composition Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways soil properties
下载PDF
Estimating Carbon Capture Potential of Fallow Weeds in Rice Cropping Systems
12
作者 Ge Chen Yuling Kang +2 位作者 Fangbo Cao Jiana Chen Min Huang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期71-77,共7页
Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sa... Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sativa L.)cropping systems.A six-region,two-year on-farm investigation and a three-year tillage experiment were conducted to estimate C capture in fallow weeds in rice cropping systems.The on-farm investigation showed that the average mean C capture by fallow weeds across six regions and two years reached 112 g m^(-2).The tillage experiment indicated that no-tillage practices increased C capture by fallow weeds by 80%on average as compared with conventional tillage.The results of this study not only contribute to an understanding of C capture potential of fallow weeds in rice cropping systems,but also provide a reference for including fallow weeds in the estimation of vegetative C sink. 展开更多
关键词 Carbon cycling fallow weeds no-tillage rice cropping system vegetative carbon sink
下载PDF
施氮量·密度和苗龄对稻田免耕油菜苗期干物质积累的影响(英文) 被引量:5
13
作者 艾复清 张帆 +1 位作者 舒中兵 樊宁 《Agricultural Science & Technology》 CAS 2008年第6期93-96,107,共5页
[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three ... [Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three factors, the 310 scheme was designed to study the effects of nitrogen application rate, density and seedling age on dry matter accumulation of no-tillage rape in seedling stage. [Result] With the increase of nitrogen application rate, density and seedling age, the dry matter content appeared like a parabola, increasing firstly and then declining. The change of nitrogen application rate caused greater influence than that of density and seedling age; the interaction effects between nitrogen application rate and density were greater than that between nitrogen application rate and seedling age as well as between density and seedling age. [Conclusion] Considered comprehensively, the dry matter content of no-tillage rape in seedling stage reached the highest level (4 768.2 kg/hm2) when the nitrogen application rate, the density and the seedling age were 195 kg/hm2, 93 000 plants/hm2 and 33 d, respectively. 展开更多
关键词 Nitrogen application rate Density SEEDLING age Dry matter ACCUMULATION SEEDLING no-tillage RAPE
下载PDF
Residue management induced changes in soil organic carbon and total nitrogen under different tillage practices in the North China Plain 被引量:9
14
作者 PU Chao KAN Zheng-rong +4 位作者 LIU Peng MA Shou-tian QI Jian-ying ZHAO Xin ZHANG Hai-lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第6期1337-1347,共11页
Crop residue retention has been considered a practicable strategy to improve soil organic carbon(SOC)and total nitrogen(TN),but the effectiveness of residue retention might be different under varied tillage practices.... Crop residue retention has been considered a practicable strategy to improve soil organic carbon(SOC)and total nitrogen(TN),but the effectiveness of residue retention might be different under varied tillage practices.To evaluate the effects of residue management on the distribution and stocks of SOC and TN under different tillage practices,a bifactorial experiment with three levels for tillage practices(no-tillage,rotary tillage,and conventional tillage)and two levels for residue managements(residue retention and residue removal)was conducted in the North China Plain(NCP).Results showed that after a short experimental duration(3–4 years),concentrations of SOC and TN in the 0–10 cm layer were higher under no-tillage than under conventional tillage,no matter whether crop residues were retained or not.Residue retention increased SOC and TN concentrations in the upper layers of soil to some degree for all tillage practices,as compared with residue removal,with the greatest increment of SOC concentration occurred in the 0–10 cm layer under rotary tillage,but in the 10–30 cm layer under conventional tillage.The stocks of SOC in the 0–50 cm depth increased from 49.89 Mg ha–1 with residue removal to 53.03 Mg ha–1 with residue retention.However,no-tillage did not increase SOC stock to a depth of 50 cm relative to conventional tillage,and increased only by 5.35%as compared with rotary tillage.Thus,residue retention may contribute more towards SOC sequestration than no-tillage.Furthermore,the combination between residue retention and no-tillage has the greatest advantage in enhancing SOC and TN in the NCP region. 展开更多
关键词 no-tillage RESIDUE RETENTION RESIDUE removal STRATIFICATION ratio SOC STOCK total nitrogen STOCK
下载PDF
Tillage, crop residue, and nutrient management effects on.soil organic carbon in rice-based cropping systems: A review 被引量:12
15
作者 Rajan Ghimire Sushil Lamichhane +2 位作者 Bharat Sharma Acharya Prakriti Bista Upendra Man Sainju 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第1期1-15,共15页
Soil organic carbon (SOC) sequestration is one of the major agricultural strategies to mitigate greenhouse gas (GHG) emissions, enhance food security, and improve agricultural sustainability. This paper synthesize... Soil organic carbon (SOC) sequestration is one of the major agricultural strategies to mitigate greenhouse gas (GHG) emissions, enhance food security, and improve agricultural sustainability. This paper synthesizes the much-needed state- of-knowledge on the effects of tillage, crop residue, and nutrient management practices on SOC sequestration and identifies potential research gap, opportunities, and challenges in studying SOC dynamics in rice (Oryza sativa L.)-based cropping systems in South Asia, mainly in Bangladesh, Bhutan, India, Nepal, Pakistan, and Sri Lanka. Improved management prac- tices such as reduced- and no-tillage management, nitrogen (N) fertilizer and farmyard manure (FYM) application, and crop residue addition can improve SOC accumulation. Positive effects of no-tillage, crop residue addition, N addition through manure or compost application, and integration of organic and chemical fertilizers on SOC accumulation in rice-based cropping systems have been documented from South Asia. However, limited data and enormous discrepancies in SOC measurements across the region exist as the greatest challenge in increasing SOC sequestration and improving agricultural sustainability. More research on SOC as influenced by alternative tillage, crop residue, and nutrient management systems, and development of SOC monitoring system for existing long-term experiments will advance our understanding of the SOC dynamics in rice-based cropping systems and improve agricultural system sustainability in South Asia. 展开更多
关键词 carbon mapping carbon sequestration crop residue no-tillage rice-wheat system
下载PDF
Yield potential and stability in super hybrid rice and its production strategies 被引量:11
16
作者 HUANG Min TANG Qi-yuan +1 位作者 AO He-jun ZOU Ying-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1009-1017,共9页
China's Super Hybrid Rice Breeding Program has made significant progress over the past two decades. In this paper, we reviewed our studies on the yield potential and stability in super hybrid rice and discussed the s... China's Super Hybrid Rice Breeding Program has made significant progress over the past two decades. In this paper, we reviewed our studies on the yield potential and stability in super hybrid rice and discussed the strategies for super hybrid rice production. The results of our studies show that rice yield potential has been increased by 12% in super hybrid cultivars as compared with ordinary hybrid and inbred cultivars. The higher grain yields in super hybrid rice cultivars are attributed to larger panicle size coupled with higher biomass production or higher harvest index. However, grain yields in super hybrid rice cultivars vary widely among locations depending on soil and climatic factors. Therefore, it is important to tailor target yield to local conditions in super hybrid rice production. The target yield for super hybrid rice production can be determined by the average yield method or the regression model method. Improving soil quality is critical to achieving the target yield in super hybrid rice production. Favorable crop rotations such as rice-oilseed rape and novel soil management practices, such as biochar addition, are effective approaches to improve soil quality. It is needed to develop simplified cultivation tech- nologies for super hybrid rice to meet the changes in socioeconomic environments during the period of transition. There are such technologies as no-tillage direct seeding and mechanized transplanting at high hill density with single seedling per hill. 展开更多
关键词 mechanized transplanting no-tillage direct seeding super hybrid rice target yield yield potential yield stability
下载PDF
Cover Crops as Affecting Soil Chemical and Physical Properties and Development of Upland Rice and Soybean Cultivated in Rotation 被引量:5
17
作者 Adriano Stephan NASCENTE Luis Fernando STONE 《Rice science》 SCIE CSCD 2018年第6期340-349,共10页
Cover crops can provide changes in soil chemical and physical properties, which could allow a sustainable development of soybean and upland rice rotation in Brazilian Cerrado. The objective of this study was to determ... Cover crops can provide changes in soil chemical and physical properties, which could allow a sustainable development of soybean and upland rice rotation in Brazilian Cerrado. The objective of this study was to determine the effects of cover crops(cultivated in the offseason) in the soybean-upland rice rotation(cultivated in the summer season) on the soil chemical and physical properties, yield components and grain yield of the cash crops. The experimental design was a randomized block design in factorial scheme 4 × 2 with six replications. Treatments were composed by four cover crops: fallow, millet(Pennisetum glaucum) + Crotalaria ochroleuca, millet + pigeon pea(Cajanus cajans), and millet + pigeon pea + Urochola ruziziensis in the offseason with one or two cycles of cover crops, with rice(Oryza sativa)or soybean(Glycine max) in the summer season. Cover crops alone provided no changes in soil chemical properties. However, the rotation cover crops/cash crops/cover crops/cash crops reduced p H, Al and H + Al and increased Ca, Mg, K and Fe contents in the soil. The cover crops millet + pigeon pea and millet + pigeon pea + U. ruziziensis improved soil physical properties in relation to fallow,especially in the 0–0.10 m soil layer. In spite of the improvement of the soil physical properties after two years of rotation with cover crops and cash crops, the soil physical quality was still below the recommended level, showing values of macroporosity, S index and soil aeration capacity lower than 0.10 m3/m3, 0.035 and 0.34, respectively. Upland rice production was higher under mixtures of cover crops than under fallow, mainly because of soil physical changes done by these mixtures of cover crops.Soybean grain yield was similar under all cover crops tested, but was higher after the rotation cover crops/upland rice/cover crops than after only one cycle of cover crops. 展开更多
关键词 crop ROTATION no-tillage system sustainable AGRICULTURE tropical AGRICULTURE rice SOYBEAN
下载PDF
Stalk cutting mechanism of no-tillage planter for wide/narrow row farming mode 被引量:5
18
作者 Jia Honglei Jiang Xinming +3 位作者 Yuan Hongfang Zhuang Jian Zhao Jiale Guo Mingzhuo 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第2期26-35,共10页
A no-tillage planter of narrow row spacing was designed according to the agronomic requirements of wide/narrow row farming mode in the black soil region of Northeast China.Due to the narrow spacing of the seeder unit,... A no-tillage planter of narrow row spacing was designed according to the agronomic requirements of wide/narrow row farming mode in the black soil region of Northeast China.Due to the narrow spacing of the seeder unit,a gear-tooth stalk cutting mechanism was designed in order to prevent residues from blocking the planter.The basic parameters,number and edge curve of the stalk cutting blade were designed and optimized.Three-factor and three-level combined orthogonal experiments were conducted using the factors of working speed(1.12 m/s,1.57 m/s and 2.02 m/s),tillage depth(75 mm,90 mm and 105 mm)and cutter spacing(15 mm,30 mm and 45 mm),which significantly affected stalk cutting rate and soil disturbance rate.The optimal combination is the working speed of 1.62 m/s,tillage depth of 92 mm and cutter spacing of 35 mm.Under this condition,the stalk cutting rate is more than 90%and soil disturbance rate is 7.5%-12.0%.The performance of the new no-tillage planter was tested by using the above parameters.The results showed that the no-tillage planter of narrow row spacing came up to the relevant national standards in China. 展开更多
关键词 conservation tillage no-tillage planter wide/narrow row farming stalk cutting mechanism soil disturbance rate direct sowing corn Northeast China
原文传递
Studies on Technique of Reducing Methane Emission in a Rice-Duck Ecological System and the Evaluation of Its Economic Significance 被引量:5
19
作者 XIANG Ping-an HUANG Huang +3 位作者 HUANG Mei GAN De-xin ZHOU Yan FU Zhi-qiang 《Agricultural Sciences in China》 CAS CSCD 2006年第10期758-766,共9页
The rice-duck ecological system is one of the major practices of the traditional Chinese agriculture. A study on the effect of reducing methane emission using this practice provided theoretical and practical basis for... The rice-duck ecological system is one of the major practices of the traditional Chinese agriculture. A study on the effect of reducing methane emission using this practice provided theoretical and practical basis for further development and utilization of this classical agricultural technique. The effect of reducing methane emission and the economic benefits of rice-duck ecological system were studied by carrying out a field experiment and by using economic methodology. The daily variation of CH4 emission in late rice paddy field was basically consistent with the daily variation of atmospheric temperature. The highest emission occurred at the full tillering stage of late rice with a rate of 24.1 or 32.2 or 40.5 mg m^-2 h^-1 in no-tillage area with duck and no-tillage area without duck and conventional-tillage area without duck, respectively. The inhibition of methane emission was apparently effective in the rice-duck ecological system during the initial tillering stage and the full tillering stage. Compared to the no-tillage area without duck, methane emission decreased by 2.333 g m^-2. Compared to the conventional-tillage area without duck, methane emission decreased by 4.723 g m^-2. During the production period of late rice, the amount of methane emission in no-tillage area with duck was 3.373 g m^-2 lesser than that of no-tillage area without duck, and 5.59 g m^-2 less than that of conventional-tillage without duck area. The economic significance was analyzed. Farmers adopting the rice-duck ecological system obtained 2 166 and 4 207 RMB yuan ha^-1 more income than those who adopted a no-tillage without duck technique or conventional-tillage without duck technique, respectively. In addition to the reduction of the environmental pollution by methane emission, the farmers who adopted the rice-duck ecological system achieved economic benefits of 5 000 RMB yuan ha^-1, which was 2 206 and 4 274 RMB yuan ha^-1 more than those who adopted a no-tillage without duck technique and a conventional-tillage without duck technique, respectively. The rice-duck ecological system not only increased the economic benefits for farmers, but also reduced methane emission in rice paddy field. A sustainable agricultural production mode was formed. 展开更多
关键词 no-tillage late rice rice-duck system methane emission mitigation options economic evaluation
下载PDF
Improving uniform scattering device for straw-smashing,back-throwing,no-tillage planter under complete straw mulching condition 被引量:5
20
作者 Fengwei Gu Xuemei Gao +3 位作者 Feng Wu Zhichao Hu Youqing Chen Chong Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第6期49-57,共9页
With the objective of obtaining a completely straw-mulched field,when no-tillage mechanical sowing is implemented with straw smashing,delivering,and back-throwing approaches,it may be difficult to scatter the smashed ... With the objective of obtaining a completely straw-mulched field,when no-tillage mechanical sowing is implemented with straw smashing,delivering,and back-throwing approaches,it may be difficult to scatter the smashed straw uniformly during a succeeding wheat sowing step.This is because the previous rice straw is substantial in quantity and has a high humidity and toughness,which may easily result in non-uniform straw mulching and thus sparse and weak seedlings of wheat.Therefore a force-dispersing and uniform-scattering device was designed.With the number of scattering impellers,impeller angle,and impeller rotation speed as the main factors and the percentage of pass for the scattering width and non-uniformity of the straw mulching as the assessment indices,single-factor experiments and orthogonal regressive tests were performed,and a dual-index(percentage of pass for the scattering width and non-uniformity of the straw mulching)fitted regression equation was established.The test results suggested that the main factors(from primary to secondary)that influence the indices were the impeller rotation speed,number of scattering impellers,and impeller angle.The optimal parameter combination for the uniform scattering device was four rows of impellers with an angle of 15°,rotation speed of 1015 r/min,percentage of pass of 72.65%for the scattering width,and a non-uniformity of 13.8%in the straw mulching.This combination can be used to realize a uniform scattering of the smashed straw along the seedling rows on the after-sowing ground.According to the field investigation of the wheat growth,the wheat emergence rate was 90.7%.The research results can provide a reference for improving the uniform scattering device for a straw-smashing,back-throwing,no-tillage planter for obtaining a completely straw-mulched field,enhancing the quality of the machinery operation,and ensuring good and strong seedlings after sowing. 展开更多
关键词 complete straw mulching no-tillage planter uniform scattering of straw
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部