期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Plasmon Assisted Highly Efficient Visible Light Catalytic CO_(2) Reduction Over the Noble Metal Decorated Sr-Incorporated g-C_(3)N_(4) 被引量:6
1
作者 Muhammad Humayun Habib Ullah +4 位作者 Lang Shu Xiang Ao Asif Ali Tahir Chungdong Wang Wei Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期416-433,共18页
The photocatalytic performance of g-C_(3)N_(4) for CO_(2) conversion is still inadequate by several shortfalls including the instability,insu cient solar light absorption and rapid charge carrier's recombination r... The photocatalytic performance of g-C_(3)N_(4) for CO_(2) conversion is still inadequate by several shortfalls including the instability,insu cient solar light absorption and rapid charge carrier's recombination rate. To solve these problems,herein,noble metals(Pt and Au)decorated Sr-incorporated g-C_(3)N_(4) photocatalysts are fabricated via the simple calcination and photo-deposition methods. The Sr-incorporation remarkably reduced the g-C_(3)N_(4) band gap from 2.7 to 2.54 eV,as evidenced by the UV–visible absorption spectra and the density functional theory results. The CO_(2) conversion performance of the catalysts was evaluated under visible light irradiation. The Pt/0.15 Sr-CN sample produced 48.55 and 74.54 μmol h-1 g-1 of CH_(4) and CO,respectively.These amounts are far greater than that produced by the Au/0.15 Sr-CN,0.15 Sr-CN,and CN samples. A high quantum e ciency of 2.92% is predicted for the Pt/0.15 Sr-CN sample. Further,the stability of the photocatalyst is confirmed via the photocatalytic recyclable test. The improved CO_(2) conversion performance of the catalyst is accredited to the promoted light absorption and remarkably enhanced charge separation via the Sr-incorporated mid gap states and the localized surface plasmon resonance e ect induced by noble metal nanoparticles.This work will provide a new approach for promoting the catalytic e ciency of g-C_(3)N_(4) for e cient solar fuel production. 展开更多
关键词 g-C_(3)N_(4) Sr-incorporation noble metal deposition Density functional theory Energy applications
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部