From the pyramids of Giza to the tombs of Thebes at Luxor, the glorious ancient Egyptian history has produced remarkable architecture. Sadly, tourists, numbering nearly four million per year, have taken a heavy toll o...From the pyramids of Giza to the tombs of Thebes at Luxor, the glorious ancient Egyptian history has produced remarkable architecture. Sadly, tourists, numbering nearly four million per year, have taken a heavy toll on many of these ancient structures. Of particular concern are many of tombs located opposite Luxor on the western bank of the Nile. Digital reconstruction of these tombs has the potential of helping to document and preserve these important historical structures. Issues concernng new and unique problems involving the photographing and digital reconstruction of these tombs are addressed. Techniques for removing image distortions, recovering 3-D shapes and correcting for lighting imbalances are discussed. A complete reconstruction of the tomb of Sennediem is shown.展开更多
Abstract: This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ag...Abstract: This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ages of the established Middle and Upper Proterozoic sequence stratigraphic framework in the Ming Tombs area lying in western Yanshan Mountain of Beijing. Besides, sketchy determination of δ13C and δ18O was also performed for other formations and members. The analytical results show the following: under the condition of clear-water carbonate sediments, δ13C and δ18O, featuring smaller variation of δ13C but larger variation of δ18O, can well delineate the relative change of sea level, which reflects the difference of primary sedimentary settings; in the presence of terrigenous substances, δ13C values vary greatly while δ18O slightly; the carbon and oxygen isotopes show marked changes at sequence boundaries. Besides, particular patterns can be found in regard to the distribution of carbon and oxygen isotopes within the sequences.展开更多
Foreign-made clocks and watches began to be exported to China in the 17th century. During the Qing Dynasty (1644-1911), the imperial court imported tens of thousands of clocks and watches. At the Palace Museum in Beij...Foreign-made clocks and watches began to be exported to China in the 17th century. During the Qing Dynasty (1644-1911), the imperial court imported tens of thousands of clocks and watches. At the Palace Museum in Beijing, about 200 timepieces collected by the imperial court are still on display in the clock and watch exhibition hall. They were made in Britain, France, Switzerland and Japan. Many foreign presidents and展开更多
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic...The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.展开更多
The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process o...The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process often needs toxic regents or dangerous reaction conditions.Herein,we develop a general green method to fabricate metal-rich NMPs anchored on NPG through pyrolyzing DNA cross-linked complexes.The obtained Ru_(2) P-NPG exhibits an ultrasmall overpotential of 7 mV at 10 mA cm^(2) and ultralow Tafel slope of 33 mV dec^(-1) in 1.0 mol L?1 KOH,even better than that of commercial Pt/C.In addition,Ru 2 P-NPG also shows low overpotentials of 29 and 78 mV in 0.5 mol L^(-1) H_(2)SO_(4) and 1.0 mol L^(-1) PBS,respectively.The superior activity can be attributed to the ultrafine dispersion of Ru 2 P nanoparticles for more accessible sites,more defects formed for abundant active sites,the two-dimensional plane structure for accelerated electron transfer and mass transport,as well as the regulation of electron distribution of the catalyst.Moreover,the synthetic method can also be applied to prepare other metal-rich noble metal phosphides(Pd_(3)P-NPG and Rh_(2)P-NPG),which also exhibits high activity for HER.This work provides an effective strategy for designing NMP-based electrocatalysts.展开更多
The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-base...The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-based composites can be enhanced by adjusting the surface plasmon resonance(SPR)of noble metal nanoparticles(e.g.,Cu,Au,and Pd)in the entire visible region.Adjustments can be carried out by varying the nanocomponents of the materials.The SPR of noble metals can enhance the local electromagnetic field and improve interband transition,and resonant energy transfer occurs from plasmonic dipoles to electron-hole pairs via near-field electromagnetic interactions.Thus,noble metals have emerged as relevant nanocomponents for g-C_(3)N_(4) used in CO_(2) photoreduction and water splitting.Herein,recent key advances in noble metals(either in single atom,cluster,or nanoparticle forms)and composite photocatalysts based on inorganic or organic nanocomponent-incorporated g-C_(3)N_(4) nanosheets are systematically discussed,including the applications of these photocatalysts,which exhibit improved photoinduced charge mobility in CO_(2) photoconversion and H2 production.Issues related to the different types of multi-nanocomponent heterostructures(involving Schottky junctions,Z-/S-scheme heterostructures,noble metals,and additional semiconductor nanocomponents)and the adjustment of dimensionality of heterostructures(by incorporating noble metal nanoplates on g-C_(3)N_(4) forming 2D/2D heterostructures)are explored.The current prospects and possible challenges of g-C_(3)N_(4) composite photocatalysts incorporated with noble metals(e.g.,Au,Pt,Pd,and Cu),particularly in water splitting,CO_(2) reduction,pollution degradation,and chemical conversion applications,are summarized.展开更多
Built between 1368 and 1911, The Imperial Tombs of the Ming (1368- 1644) and Qing (1644-1911) dynaslies includes Xianling Tombs of theMing Dynast). Eastern and Western Qing Tornbs, Xiaoling Tomb of the Ming Dynasty.
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys...Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.展开更多
Cultural heritage of emperor's tomb of Wulingyuan Mausoleum lies in Xianyang which is located at north-central of Guanzhong Plain and which is the central area of Guanzhong-Tianshui economic development zone.With ...Cultural heritage of emperor's tomb of Wulingyuan Mausoleum lies in Xianyang which is located at north-central of Guanzhong Plain and which is the central area of Guanzhong-Tianshui economic development zone.With special geographical position and excellent location condition,it is the important tourism resource and archaeological remains in Shaanxi Province.By using relevant knowledge on tourism,in the perspective of development principle,necessity,feasibility,construction strategy and thought of top-quality tourism corridor with cultural heritage of emperor's tomb of Wulingyuan Mausoleum as theme experience,the author systematically explained the mode elements and value of experiential tourism products,and publicized the tourism resources to a certain extent.On the basis of publicity,the author strived to provide reference for the sustainable development of economy and ecology in this region.展开更多
A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were cha...A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were characterized using BET, TPR, TPO, TPH, and H2S chemisorption techniques. The activity results showed high activity and stability for the Ru and Rh catalysts. The TPO and TPH analyses indicated that the main reason for lower activity and stability of the Pd catalyst was the formation of the less reactive deposited carbon and sintering of the catalyst.展开更多
Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived ...Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He. Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic areathan do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4‰ to 1.6 ‰ and from -52.8‰ to -2.8‰, respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and near-surface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantle-derived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material. However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1 %-2%) to the MORB reservoir around 1.3 Ga ago, which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.展开更多
文摘From the pyramids of Giza to the tombs of Thebes at Luxor, the glorious ancient Egyptian history has produced remarkable architecture. Sadly, tourists, numbering nearly four million per year, have taken a heavy toll on many of these ancient structures. Of particular concern are many of tombs located opposite Luxor on the western bank of the Nile. Digital reconstruction of these tombs has the potential of helping to document and preserve these important historical structures. Issues concernng new and unique problems involving the photographing and digital reconstruction of these tombs are addressed. Techniques for removing image distortions, recovering 3-D shapes and correcting for lighting imbalances are discussed. A complete reconstruction of the tomb of Sennediem is shown.
文摘Abstract: This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ages of the established Middle and Upper Proterozoic sequence stratigraphic framework in the Ming Tombs area lying in western Yanshan Mountain of Beijing. Besides, sketchy determination of δ13C and δ18O was also performed for other formations and members. The analytical results show the following: under the condition of clear-water carbonate sediments, δ13C and δ18O, featuring smaller variation of δ13C but larger variation of δ18O, can well delineate the relative change of sea level, which reflects the difference of primary sedimentary settings; in the presence of terrigenous substances, δ13C values vary greatly while δ18O slightly; the carbon and oxygen isotopes show marked changes at sequence boundaries. Besides, particular patterns can be found in regard to the distribution of carbon and oxygen isotopes within the sequences.
文摘Foreign-made clocks and watches began to be exported to China in the 17th century. During the Qing Dynasty (1644-1911), the imperial court imported tens of thousands of clocks and watches. At the Palace Museum in Beijing, about 200 timepieces collected by the imperial court are still on display in the clock and watch exhibition hall. They were made in Britain, France, Switzerland and Japan. Many foreign presidents and
基金supported by the National Natural Science Foundation of China(22374119,21902128)the China Postdoctoral Science Foundation(2021M692620)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2021-QZ-01)the Key Project of Natural Science Fund of Shaanxi Province(2023-JC-ZD-06)。
文摘The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.
基金This work was supported by the Fundamental Research Funds for the Central Universities(No.2022XJHH02)the National Key Research and Development Program of China(No.2019YFC1907602).
文摘The exploitation of electrocatalysts with high activity and durability for HER is desirable for future energy systems,but it is still a challenge.NMPs have attracted increasing attentions,but the preparation process often needs toxic regents or dangerous reaction conditions.Herein,we develop a general green method to fabricate metal-rich NMPs anchored on NPG through pyrolyzing DNA cross-linked complexes.The obtained Ru_(2) P-NPG exhibits an ultrasmall overpotential of 7 mV at 10 mA cm^(2) and ultralow Tafel slope of 33 mV dec^(-1) in 1.0 mol L?1 KOH,even better than that of commercial Pt/C.In addition,Ru 2 P-NPG also shows low overpotentials of 29 and 78 mV in 0.5 mol L^(-1) H_(2)SO_(4) and 1.0 mol L^(-1) PBS,respectively.The superior activity can be attributed to the ultrafine dispersion of Ru 2 P nanoparticles for more accessible sites,more defects formed for abundant active sites,the two-dimensional plane structure for accelerated electron transfer and mass transport,as well as the regulation of electron distribution of the catalyst.Moreover,the synthetic method can also be applied to prepare other metal-rich noble metal phosphides(Pd_(3)P-NPG and Rh_(2)P-NPG),which also exhibits high activity for HER.This work provides an effective strategy for designing NMP-based electrocatalysts.
基金supported in part by the projects from the National Natural Science Foundation of China(No.51972145)Jinan Science&Technology Bureau,China(No.2021GXRC109)Science and Technology Program of the University of Jinan,China(No.XKY2118).
文摘The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-based composites can be enhanced by adjusting the surface plasmon resonance(SPR)of noble metal nanoparticles(e.g.,Cu,Au,and Pd)in the entire visible region.Adjustments can be carried out by varying the nanocomponents of the materials.The SPR of noble metals can enhance the local electromagnetic field and improve interband transition,and resonant energy transfer occurs from plasmonic dipoles to electron-hole pairs via near-field electromagnetic interactions.Thus,noble metals have emerged as relevant nanocomponents for g-C_(3)N_(4) used in CO_(2) photoreduction and water splitting.Herein,recent key advances in noble metals(either in single atom,cluster,or nanoparticle forms)and composite photocatalysts based on inorganic or organic nanocomponent-incorporated g-C_(3)N_(4) nanosheets are systematically discussed,including the applications of these photocatalysts,which exhibit improved photoinduced charge mobility in CO_(2) photoconversion and H2 production.Issues related to the different types of multi-nanocomponent heterostructures(involving Schottky junctions,Z-/S-scheme heterostructures,noble metals,and additional semiconductor nanocomponents)and the adjustment of dimensionality of heterostructures(by incorporating noble metal nanoplates on g-C_(3)N_(4) forming 2D/2D heterostructures)are explored.The current prospects and possible challenges of g-C_(3)N_(4) composite photocatalysts incorporated with noble metals(e.g.,Au,Pt,Pd,and Cu),particularly in water splitting,CO_(2) reduction,pollution degradation,and chemical conversion applications,are summarized.
文摘Built between 1368 and 1911, The Imperial Tombs of the Ming (1368- 1644) and Qing (1644-1911) dynaslies includes Xianling Tombs of theMing Dynast). Eastern and Western Qing Tornbs, Xiaoling Tomb of the Ming Dynasty.
基金supported by the National High Technology Research and Development Program (863 Program,2015AA034603)the National Natural Science Foundation of China (21377008,201077007,20973017)+1 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Platform National Materials Research Base Construction~~
文摘Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.
基金Supported by Financial Project of Shaanxi Province Key Disciplines:Key Supported Discipline of History and Geography (Landscape Lay-out and Cultural Tourism Development of Wulingyuan Mausoleum)the Financial Project of Shaanxi (College) Philosophy and Social Key Research Base Science -Guanzhong Ancient Mausoleum Culture Research Center~~
文摘Cultural heritage of emperor's tomb of Wulingyuan Mausoleum lies in Xianyang which is located at north-central of Guanzhong Plain and which is the central area of Guanzhong-Tianshui economic development zone.With special geographical position and excellent location condition,it is the important tourism resource and archaeological remains in Shaanxi Province.By using relevant knowledge on tourism,in the perspective of development principle,necessity,feasibility,construction strategy and thought of top-quality tourism corridor with cultural heritage of emperor's tomb of Wulingyuan Mausoleum as theme experience,the author systematically explained the mode elements and value of experiential tourism products,and publicized the tourism resources to a certain extent.On the basis of publicity,the author strived to provide reference for the sustainable development of economy and ecology in this region.
文摘A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were characterized using BET, TPR, TPO, TPH, and H2S chemisorption techniques. The activity results showed high activity and stability for the Ru and Rh catalysts. The TPO and TPH analyses indicated that the main reason for lower activity and stability of the Pd catalyst was the formation of the less reactive deposited carbon and sintering of the catalyst.
文摘Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He. Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic areathan do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4‰ to 1.6 ‰ and from -52.8‰ to -2.8‰, respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and near-surface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantle-derived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material. However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1 %-2%) to the MORB reservoir around 1.3 Ga ago, which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.